Optimal. Leaf size=28 \[ 1-5 e^{1+e^3}+x-\left (1-\frac {x}{3 (-2+x)}\right )^4 \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 46, normalized size of antiderivative = 1.64, number of steps used = 2, number of rules used = 1, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2074} \begin {gather*} x-\frac {64}{81 (2-x)}-\frac {32}{27 (2-x)^2}-\frac {64}{81 (2-x)^3}-\frac {16}{81 (2-x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {64}{81 (-2+x)^5}-\frac {64}{27 (-2+x)^4}+\frac {64}{27 (-2+x)^3}-\frac {64}{81 (-2+x)^2}\right ) \, dx\\ &=-\frac {16}{81 (2-x)^4}-\frac {64}{81 (2-x)^3}-\frac {32}{27 (2-x)^2}-\frac {64}{81 (2-x)}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 38, normalized size = 1.36 \begin {gather*} \frac {1}{81} \left (-\frac {16}{(-2+x)^4}+\frac {64}{(-2+x)^3}-\frac {96}{(-2+x)^2}+\frac {64}{-2+x}+81 (-2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 47, normalized size = 1.68 \begin {gather*} \frac {81 \, x^{5} - 648 \, x^{4} + 2008 \, x^{3} - 3072 \, x^{2} + 2512 \, x - 1040}{81 \, {\left (x^{4} - 8 \, x^{3} + 24 \, x^{2} - 32 \, x + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.86 \begin {gather*} x + \frac {16 \, {\left (4 \, x^{3} - 30 \, x^{2} + 76 \, x - 65\right )}}{81 \, {\left (x - 2\right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.89
method | result | size |
norman | \(\frac {x^{5}-\frac {18224}{81} x -\frac {3176}{81} x^{3}+\frac {4160}{27} x^{2}+\frac {9328}{81}}{\left (x -2\right )^{4}}\) | \(25\) |
default | \(x +\frac {64}{81 \left (x -2\right )}+\frac {64}{81 \left (x -2\right )^{3}}-\frac {16}{81 \left (x -2\right )^{4}}-\frac {32}{27 \left (x -2\right )^{2}}\) | \(31\) |
risch | \(x +\frac {\frac {64}{81} x^{3}-\frac {160}{27} x^{2}+\frac {1216}{81} x -\frac {1040}{81}}{x^{4}-8 x^{3}+24 x^{2}-32 x +16}\) | \(39\) |
gosper | \(\frac {81 x^{5}-3176 x^{3}+12480 x^{2}-18224 x +9328}{81 x^{4}-648 x^{3}+1944 x^{2}-2592 x +1296}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 39, normalized size = 1.39 \begin {gather*} x + \frac {16 \, {\left (4 \, x^{3} - 30 \, x^{2} + 76 \, x - 65\right )}}{81 \, {\left (x^{4} - 8 \, x^{3} + 24 \, x^{2} - 32 \, x + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.69, size = 23, normalized size = 0.82 \begin {gather*} x+\frac {\frac {64\,x^3}{81}-\frac {160\,x^2}{27}+\frac {1216\,x}{81}-\frac {1040}{81}}{{\left (x-2\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 36, normalized size = 1.29 \begin {gather*} x + \frac {64 x^{3} - 480 x^{2} + 1216 x - 1040}{81 x^{4} - 648 x^{3} + 1944 x^{2} - 2592 x + 1296} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________