Optimal. Leaf size=31 \[ 3-2 (1+x)^2 \left (2+\frac {16 x^2 (-x+\log (3))^2}{(2+x)^2}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 1.33, antiderivative size = 246, normalized size of antiderivative = 7.94, number of steps used = 17, number of rules used = 11, integrand size = 192, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6688, 12, 6742, 1612, 2357, 2304, 2295, 2314, 31, 2319, 44} \begin {gather*} -32 x^4 \log (x)+64 x^3 (1+\log (3)) \log (x)-4 x^2 \left (41+8 \log ^2(3)+32 \log (3)\right ) \log (x)-\frac {64 x \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (x)}{x+2}+8 x \left (47+8 \log ^2(3)+40 \log (3)\right )-\frac {128 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x)}{(x+2)^2}+32 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x)-32 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x+2)+64 \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (x+2)+\frac {64 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right )}{x+2}+8 x (47+8 \log (3) (5+\log (3))) \log (x)-8 x (47+8 \log (3) (5+\log (3)))-4 \log (x)-32 (2+\log (3)) (14+\log (243)) \log (x+2)-\frac {64 (2+\log (3))^2}{x+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 44
Rule 1612
Rule 2295
Rule 2304
Rule 2314
Rule 2319
Rule 2357
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 (1+x) \left (-\left (\left (2+3 x+x^2\right ) \left (4+4 x+8 x^4-16 x^3 \log (3)+x^2 \left (1+8 \log ^2(3)\right )\right )\right )-2 x \left (8+16 x^5+4 x \left (3+4 \log ^2(3)\right )+x^3 \left (33-88 \log (3)+8 \log ^2(3)\right )+x^2 \left (6-48 \log (3)+32 \log ^2(3)\right )-8 x^4 (-7+\log (27))\right ) \log (x)\right )}{x (2+x)^3} \, dx\\ &=4 \int \frac {(1+x) \left (-\left (\left (2+3 x+x^2\right ) \left (4+4 x+8 x^4-16 x^3 \log (3)+x^2 \left (1+8 \log ^2(3)\right )\right )\right )-2 x \left (8+16 x^5+4 x \left (3+4 \log ^2(3)\right )+x^3 \left (33-88 \log (3)+8 \log ^2(3)\right )+x^2 \left (6-48 \log (3)+32 \log ^2(3)\right )-8 x^4 (-7+\log (27))\right ) \log (x)\right )}{x (2+x)^3} \, dx\\ &=4 \int \left (\frac {(1+x)^2 \left (-4-4 x-8 x^4+16 x^3 \log (3)-x^2 \left (1+8 \log ^2(3)\right )\right )}{x (2+x)^2}+\frac {2 (1+x) \left (-8-16 x^5-56 x^4 \left (1-\frac {3 \log (3)}{7}\right )-33 x^3 \left (1+\frac {8}{33} (-11+\log (3)) \log (3)\right )-12 x \left (1+\frac {4 \log ^2(3)}{3}\right )-6 x^2 \left (1+\frac {8}{3} \log (3) (-3+\log (9))\right )\right ) \log (x)}{(2+x)^3}\right ) \, dx\\ &=4 \int \frac {(1+x)^2 \left (-4-4 x-8 x^4+16 x^3 \log (3)-x^2 \left (1+8 \log ^2(3)\right )\right )}{x (2+x)^2} \, dx+8 \int \frac {(1+x) \left (-8-16 x^5-56 x^4 \left (1-\frac {3 \log (3)}{7}\right )-33 x^3 \left (1+\frac {8}{33} (-11+\log (3)) \log (3)\right )-12 x \left (1+\frac {4 \log ^2(3)}{3}\right )-6 x^2 \left (1+\frac {8}{3} \log (3) (-3+\log (9))\right )\right ) \log (x)}{(2+x)^3} \, dx\\ &=4 \int \left (-\frac {1}{x}-8 x^3+16 x^2 (1+\log (3))+\frac {8 (-14-5 \log (3)) (2+\log (3))}{2+x}+\frac {16 (2+\log (3))^2}{(2+x)^2}-x \left (41+32 \log (3)+8 \log ^2(3)\right )+2 \left (47+40 \log (3)+8 \log ^2(3)\right )\right ) \, dx+8 \int \left (-16 x^3 \log (x)+24 x^2 (1+\log (3)) \log (x)-x \left (41+32 \log (3)+8 \log ^2(3)\right ) \log (x)+47 \left (1+\frac {8}{47} \log (3) (5+\log (3))\right ) \log (x)+\frac {16 \left (-16+13 \log ^2(3)-2 \log (3) (7+4 \log (9))\right ) \log (x)}{(2+x)^2}-\frac {32 \left (-4+3 \log ^2(3)-\log ^2(9)-\log (81)\right ) \log (x)}{(2+x)^3}\right ) \, dx\\ &=-8 x^4+\frac {64}{3} x^3 (1+\log (3))-\frac {64 (2+\log (3))^2}{2+x}-2 x^2 \left (41+32 \log (3)+8 \log ^2(3)\right )+8 x \left (47+40 \log (3)+8 \log ^2(3)\right )-4 \log (x)-32 (2+\log (3)) (14+\log (243)) \log (2+x)-128 \int x^3 \log (x) \, dx+(192 (1+\log (3))) \int x^2 \log (x) \, dx-\left (8 \left (41+32 \log (3)+8 \log ^2(3)\right )\right ) \int x \log (x) \, dx+(8 (47+8 \log (3) (5+\log (3)))) \int \log (x) \, dx-\left (128 \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right )\right ) \int \frac {\log (x)}{(2+x)^2} \, dx+\left (256 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right )\right ) \int \frac {\log (x)}{(2+x)^3} \, dx\\ &=-\frac {64 (2+\log (3))^2}{2+x}+8 x \left (47+40 \log (3)+8 \log ^2(3)\right )-8 x (47+8 \log (3) (5+\log (3)))-4 \log (x)-32 x^4 \log (x)+64 x^3 (1+\log (3)) \log (x)-4 x^2 \left (41+32 \log (3)+8 \log ^2(3)\right ) \log (x)+8 x (47+8 \log (3) (5+\log (3))) \log (x)-\frac {64 x \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (x)}{2+x}-\frac {128 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x)}{(2+x)^2}-32 (2+\log (3)) (14+\log (243)) \log (2+x)+\left (64 \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right )\right ) \int \frac {1}{2+x} \, dx+\left (128 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right )\right ) \int \frac {1}{x (2+x)^2} \, dx\\ &=-\frac {64 (2+\log (3))^2}{2+x}+8 x \left (47+40 \log (3)+8 \log ^2(3)\right )-8 x (47+8 \log (3) (5+\log (3)))-4 \log (x)-32 x^4 \log (x)+64 x^3 (1+\log (3)) \log (x)-4 x^2 \left (41+32 \log (3)+8 \log ^2(3)\right ) \log (x)+8 x (47+8 \log (3) (5+\log (3))) \log (x)-\frac {64 x \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (x)}{2+x}-\frac {128 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x)}{(2+x)^2}+64 \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (2+x)-32 (2+\log (3)) (14+\log (243)) \log (2+x)+\left (128 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right )\right ) \int \left (\frac {1}{4 x}-\frac {1}{2 (2+x)^2}-\frac {1}{4 (2+x)}\right ) \, dx\\ &=-\frac {64 (2+\log (3))^2}{2+x}+8 x \left (47+40 \log (3)+8 \log ^2(3)\right )-8 x (47+8 \log (3) (5+\log (3)))+\frac {64 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right )}{2+x}-4 \log (x)-32 x^4 \log (x)+64 x^3 (1+\log (3)) \log (x)-4 x^2 \left (41+32 \log (3)+8 \log ^2(3)\right ) \log (x)+8 x (47+8 \log (3) (5+\log (3))) \log (x)-\frac {64 x \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (x)}{2+x}+32 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x)-\frac {128 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (x)}{(2+x)^2}+64 \left (16-13 \log ^2(3)+2 \log (3) (7+4 \log (9))\right ) \log (2+x)-32 \left (4-3 \log ^2(3)+\log ^2(9)+\log (81)\right ) \log (2+x)-32 (2+\log (3)) (14+\log (243)) \log (2+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 84, normalized size = 2.71 \begin {gather*} -\frac {4 \left (12+36 x+24 x^6+3 x^2 \left (13+8 \log ^2(3)\right )+2 x^3 \left (9+648 \log (3)+24 \log ^2(3)-224 \log (27)\right )-16 x^5 (-3+\log (27))+x^4 \left (27-264 \log (3)+24 \log ^2(3)+56 \log (27)\right )\right ) \log (x)}{3 (2+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 78, normalized size = 2.52 \begin {gather*} -\frac {4 \, {\left (8 \, x^{6} + 16 \, x^{5} + 9 \, x^{4} + 6 \, x^{3} + 8 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (3)^{2} + 13 \, x^{2} - 16 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )} \log \relax (3) + 12 \, x + 4\right )} \log \relax (x)}{x^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 106, normalized size = 3.42 \begin {gather*} -4 \, {\left (8 \, x^{4} - 16 \, x^{3} {\left (\log \relax (3) + 1\right )} + {\left (8 \, \log \relax (3)^{2} + 32 \, \log \relax (3) + 41\right )} x^{2} - 2 \, {\left (8 \, \log \relax (3)^{2} + 40 \, \log \relax (3) + 47\right )} x - \frac {32 \, {\left (3 \, x \log \relax (3)^{2} + 14 \, x \log \relax (3) + 5 \, \log \relax (3)^{2} + 16 \, x + 24 \, \log \relax (3) + 28\right )}}{x^{2} + 4 \, x + 4}\right )} \log \relax (x) - 4 \, {\left (40 \, \log \relax (3)^{2} + 192 \, \log \relax (3) + 225\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 86, normalized size = 2.77
method | result | size |
norman | \(\frac {-16 \ln \relax (x )+\left (-64+64 \ln \relax (3)\right ) x^{5} \ln \relax (x )-48 x \ln \relax (x )+\left (-52-32 \ln \relax (3)^{2}\right ) x^{2} \ln \relax (x )+\left (-36+128 \ln \relax (3)-32 \ln \relax (3)^{2}\right ) x^{4} \ln \relax (x )+\left (-24+64 \ln \relax (3)-64 \ln \relax (3)^{2}\right ) x^{3} \ln \relax (x )-32 x^{6} \ln \relax (x )}{\left (2+x \right )^{2}}\) | \(86\) |
risch | \(-\frac {4 \left (8 x^{4} \ln \relax (3)^{2}-16 x^{5} \ln \relax (3)+8 x^{6}+16 x^{3} \ln \relax (3)^{2}-32 x^{4} \ln \relax (3)+16 x^{5}-32 x^{2} \ln \relax (3)^{2}-16 x^{3} \ln \relax (3)+9 x^{4}-160 x \ln \relax (3)^{2}-192 x^{2} \ln \relax (3)+6 x^{3}-160 \ln \relax (3)^{2}-768 x \ln \relax (3)-212 x^{2}-768 \ln \relax (3)-888 x -896\right ) \ln \relax (x )}{x^{2}+4 x +4}-160 \ln \relax (3)^{2} \ln \relax (x )-768 \ln \relax (3) \ln \relax (x )-900 \ln \relax (x )\) | \(141\) |
default | \(320 x \ln \relax (3) \ln \relax (x )-128 x^{2} \ln \relax (3) \ln \relax (x )-164 x^{2} \ln \relax (x )-32 x^{2} \ln \relax (3)^{2} \ln \relax (x )-4 \ln \relax (x )+64 x^{3} \ln \relax (x )-32 x^{4} \ln \relax (x )+376 x \ln \relax (x )+\frac {128 \ln \relax (x ) x \left (4+x \right )}{\left (2+x \right )^{2}}+\frac {128 \ln \relax (3) \ln \relax (x ) x^{2}}{\left (2+x \right )^{2}}+\frac {512 \ln \relax (3) \ln \relax (x ) x}{\left (2+x \right )^{2}}-\frac {896 \ln \relax (3) \ln \relax (x ) x}{2+x}+\frac {32 \ln \relax (3)^{2} \ln \relax (x ) x^{2}}{\left (2+x \right )^{2}}+\frac {128 \ln \relax (3)^{2} \ln \relax (x ) x}{\left (2+x \right )^{2}}-\frac {192 \ln \relax (3)^{2} \ln \relax (x ) x}{2+x}+64 \ln \relax (x ) \ln \relax (3) x^{3}-\frac {1024 \ln \relax (x ) x}{2+x}+64 \ln \relax (x ) \ln \relax (3)^{2} x\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 638, normalized size = 20.58 \begin {gather*} -8 \, x^{4} + \frac {64}{3} \, x^{3} - 16 \, {\left (x^{2} - 12 \, x + \frac {16 \, {\left (4 \, x + 7\right )}}{x^{2} + 4 \, x + 4} + 48 \, \log \left (x + 2\right )\right )} \log \relax (3)^{2} - 128 \, {\left (x - \frac {4 \, {\left (3 \, x + 5\right )}}{x^{2} + 4 \, x + 4} - 6 \, \log \left (x + 2\right )\right )} \log \relax (3)^{2} + 32 \, {\left (\frac {4 \, {\left (x + 1\right )} \log \relax (x)}{x^{2} + 4 \, x + 4} + \frac {2}{x + 2} + \log \left (x + 2\right ) - \log \relax (x)\right )} \log \relax (3)^{2} - 160 \, {\left (\frac {2 \, {\left (2 \, x + 3\right )}}{x^{2} + 4 \, x + 4} + \log \left (x + 2\right )\right )} \log \relax (3)^{2} - 82 \, x^{2} + \frac {64}{3} \, {\left (x^{3} - 9 \, x^{2} + 72 \, x - \frac {48 \, {\left (5 \, x + 9\right )}}{x^{2} + 4 \, x + 4} - 240 \, \log \left (x + 2\right )\right )} \log \relax (3) + 128 \, {\left (x^{2} - 12 \, x + \frac {16 \, {\left (4 \, x + 7\right )}}{x^{2} + 4 \, x + 4} + 48 \, \log \left (x + 2\right )\right )} \log \relax (3) + 320 \, {\left (x - \frac {4 \, {\left (3 \, x + 5\right )}}{x^{2} + 4 \, x + 4} - 6 \, \log \left (x + 2\right )\right )} \log \relax (3) + 128 \, {\left (\frac {2 \, {\left (2 \, x + 3\right )}}{x^{2} + 4 \, x + 4} + \log \left (x + 2\right )\right )} \log \relax (3) + \frac {64 \, {\left (x + 1\right )} \log \relax (3)^{2}}{x^{2} + 4 \, x + 4} + 16 \, {\left (8 \, \log \relax (3)^{2} + 48 \, \log \relax (3) + 53\right )} \log \left (x + 2\right ) + 376 \, x + \frac {160 \, {\left (x + 1\right )} \log \relax (x)}{x^{2} + 4 \, x + 4} + \frac {2 \, {\left (12 \, x^{6} - 16 \, x^{5} {\left (2 \, \log \relax (3) - 1\right )} + {\left (24 \, \log \relax (3)^{2} - 32 \, \log \relax (3) + 43\right )} x^{4} - 8 \, x^{3} {\left (28 \, \log \relax (3) + 25\right )} - 12 \, {\left (24 \, \log \relax (3)^{2} + 128 \, \log \relax (3) + 147\right )} x^{2} - 48 \, {\left (8 \, \log \relax (3)^{2} + 32 \, \log \relax (3) + 41\right )} x - 6 \, {\left (8 \, x^{6} - 16 \, x^{5} {\left (\log \relax (3) - 1\right )} + {\left (8 \, \log \relax (3)^{2} - 32 \, \log \relax (3) + 9\right )} x^{4} + 2 \, {\left (8 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 3\right )} x^{3}\right )} \log \relax (x) + 768 \, \log \relax (3) + 576\right )}}{3 \, {\left (x^{2} + 4 \, x + 4\right )}} - \frac {1024 \, {\left (6 \, x + 11\right )}}{x^{2} + 4 \, x + 4} + \frac {2048 \, {\left (5 \, x + 9\right )}}{x^{2} + 4 \, x + 4} - \frac {1312 \, {\left (4 \, x + 7\right )}}{x^{2} + 4 \, x + 4} + \frac {384 \, {\left (3 \, x + 5\right )}}{x^{2} + 4 \, x + 4} - \frac {200 \, {\left (2 \, x + 3\right )}}{x^{2} + 4 \, x + 4} - \frac {8 \, {\left (x + 3\right )}}{x^{2} + 4 \, x + 4} + \frac {152 \, {\left (x + 1\right )}}{x^{2} + 4 \, x + 4} + \frac {32 \, \log \relax (x)}{x^{2} + 4 \, x + 4} + \frac {56}{x^{2} + 4 \, x + 4} + \frac {64}{x + 2} - 848 \, \log \left (x + 2\right ) - 52 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.94, size = 43, normalized size = 1.39 \begin {gather*} -\frac {4\,\ln \relax (x)\,{\left (x+1\right )}^2\,\left (4\,x+8\,x^2\,{\ln \relax (3)}^2-16\,x^3\,\ln \relax (3)+x^2+8\,x^4+4\right )}{{\left (x+2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.48, size = 151, normalized size = 4.87 \begin {gather*} \left (-900 - 768 \log {\relax (3 )} - 160 \log {\relax (3 )}^{2}\right ) \log {\relax (x )} + \frac {\left (- 32 x^{6} - 64 x^{5} + 64 x^{5} \log {\relax (3 )} - 32 x^{4} \log {\relax (3 )}^{2} - 36 x^{4} + 128 x^{4} \log {\relax (3 )} - 64 x^{3} \log {\relax (3 )}^{2} - 24 x^{3} + 64 x^{3} \log {\relax (3 )} + 128 x^{2} \log {\relax (3 )}^{2} + 768 x^{2} \log {\relax (3 )} + 848 x^{2} + 640 x \log {\relax (3 )}^{2} + 3072 x \log {\relax (3 )} + 3552 x + 640 \log {\relax (3 )}^{2} + 3072 \log {\relax (3 )} + 3584\right ) \log {\relax (x )}}{x^{2} + 4 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________