Optimal. Leaf size=31 \[ \frac {9-x^2+2 \left (x+\frac {4}{x (3+x)}-\log (4 x)\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.34, antiderivative size = 36, normalized size of antiderivative = 1.16, number of steps used = 15, number of rules used = 6, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {1594, 27, 6742, 44, 43, 2304} \begin {gather*} \frac {8}{3 x^2}-x+\frac {8}{9 (x+3)}+\frac {73}{9 x}-\frac {2 \log (4 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 44
Rule 1594
Rule 2304
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-48-123 x-66 x^2-20 x^3-6 x^4-x^5+\left (18 x+12 x^2+2 x^3\right ) \log (4 x)}{x^3 \left (9+6 x+x^2\right )} \, dx\\ &=\int \frac {-48-123 x-66 x^2-20 x^3-6 x^4-x^5+\left (18 x+12 x^2+2 x^3\right ) \log (4 x)}{x^3 (3+x)^2} \, dx\\ &=\int \left (-\frac {20}{(3+x)^2}-\frac {48}{x^3 (3+x)^2}-\frac {123}{x^2 (3+x)^2}-\frac {66}{x (3+x)^2}-\frac {6 x}{(3+x)^2}-\frac {x^2}{(3+x)^2}+\frac {2 \log (4 x)}{x^2}\right ) \, dx\\ &=\frac {20}{3+x}+2 \int \frac {\log (4 x)}{x^2} \, dx-6 \int \frac {x}{(3+x)^2} \, dx-48 \int \frac {1}{x^3 (3+x)^2} \, dx-66 \int \frac {1}{x (3+x)^2} \, dx-123 \int \frac {1}{x^2 (3+x)^2} \, dx-\int \frac {x^2}{(3+x)^2} \, dx\\ &=-\frac {2}{x}+\frac {20}{3+x}-\frac {2 \log (4 x)}{x}-6 \int \left (-\frac {3}{(3+x)^2}+\frac {1}{3+x}\right ) \, dx-48 \int \left (\frac {1}{9 x^3}-\frac {2}{27 x^2}+\frac {1}{27 x}-\frac {1}{27 (3+x)^2}-\frac {1}{27 (3+x)}\right ) \, dx-66 \int \left (\frac {1}{9 x}-\frac {1}{3 (3+x)^2}-\frac {1}{9 (3+x)}\right ) \, dx-123 \int \left (\frac {1}{9 x^2}-\frac {2}{27 x}+\frac {1}{9 (3+x)^2}+\frac {2}{27 (3+x)}\right ) \, dx-\int \left (1+\frac {9}{(3+x)^2}-\frac {6}{3+x}\right ) \, dx\\ &=\frac {8}{3 x^2}+\frac {73}{9 x}-x+\frac {8}{9 (3+x)}-\frac {2 \log (4 x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 36, normalized size = 1.16 \begin {gather*} \frac {8}{3 x^2}+\frac {73}{9 x}-x+\frac {8}{9 (3+x)}-\frac {2 \log (4 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 44, normalized size = 1.42 \begin {gather*} -\frac {x^{4} + 3 \, x^{3} - 9 \, x^{2} + 2 \, {\left (x^{2} + 3 \, x\right )} \log \left (4 \, x\right ) - 27 \, x - 8}{x^{3} + 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 30, normalized size = 0.97 \begin {gather*} -x - \frac {2 \, \log \left (4 \, x\right )}{x} + \frac {8}{9 \, {\left (x + 3\right )}} + \frac {73 \, x + 24}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 33, normalized size = 1.06
method | result | size |
derivativedivides | \(-\frac {2 \ln \left (4 x \right )}{x}+\frac {73}{9 x}-x +\frac {8}{3 x^{2}}+\frac {32}{9 \left (4 x +12\right )}\) | \(33\) |
default | \(-\frac {2 \ln \left (4 x \right )}{x}+\frac {73}{9 x}-x +\frac {8}{3 x^{2}}+\frac {32}{9 \left (4 x +12\right )}\) | \(33\) |
risch | \(-\frac {2 \ln \left (4 x \right )}{x}-\frac {x^{4}+3 x^{3}-9 x^{2}-27 x -8}{x^{2} \left (3+x \right )}\) | \(39\) |
norman | \(\frac {8+18 x^{2}-2 x^{2} \ln \left (4 x \right )+27 x -x^{4}-6 x \ln \left (4 x \right )}{x^{2} \left (3+x \right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 63, normalized size = 2.03 \begin {gather*} -x - \frac {8 \, {\left (2 \, x^{2} + 3 \, x - 3\right )}}{3 \, {\left (x^{3} + 3 \, x^{2}\right )}} + \frac {41 \, {\left (2 \, x + 3\right )}}{3 \, {\left (x^{2} + 3 \, x\right )}} - \frac {2 \, {\left (2 \, \log \relax (2) + \log \relax (x) + 1\right )}}{x} - \frac {11}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 38, normalized size = 1.23 \begin {gather*} -x-\frac {x^2\,\left (2\,\ln \left (4\,x\right )-9\right )+x\,\left (6\,\ln \left (4\,x\right )-27\right )-8}{x^2\,\left (x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 31, normalized size = 1.00 \begin {gather*} - x - \frac {- 9 x^{2} - 27 x - 8}{x^{3} + 3 x^{2}} - \frac {2 \log {\left (4 x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________