Optimal. Leaf size=26 \[ 1+\left (-x+e \log \left (-x (-16+3 x)+\log \left (e^2 x\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 20, normalized size of antiderivative = 0.77, number of steps used = 3, number of rules used = 3, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 12, 6686} \begin {gather*} \left (x-e \log \left (-3 x^2+16 x+\log (x)+2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (x \left (2+16 x-3 x^2\right )+e \left (-1-16 x+6 x^2\right )+x \log (x)\right ) \left (x-e \log \left (2+16 x-3 x^2+\log (x)\right )\right )}{x \left (2+16 x-3 x^2+\log (x)\right )} \, dx\\ &=2 \int \frac {\left (x \left (2+16 x-3 x^2\right )+e \left (-1-16 x+6 x^2\right )+x \log (x)\right ) \left (x-e \log \left (2+16 x-3 x^2+\log (x)\right )\right )}{x \left (2+16 x-3 x^2+\log (x)\right )} \, dx\\ &=\left (x-e \log \left (2+16 x-3 x^2+\log (x)\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 21, normalized size = 0.81 \begin {gather*} \left (-x+e \log \left (2+16 x-3 x^2+\log (x)\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 44, normalized size = 1.69 \begin {gather*} -2 \, x e \log \left (-3 \, x^{2} + 16 \, x + \log \left (x e^{2}\right )\right ) + e^{2} \log \left (-3 \, x^{2} + 16 \, x + \log \left (x e^{2}\right )\right )^{2} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 40, normalized size = 1.54 \begin {gather*} -2 \, x e \log \left (-3 \, x^{2} + 16 \, x + \log \relax (x) + 2\right ) + e^{2} \log \left (-3 \, x^{2} + 16 \, x + \log \relax (x) + 2\right )^{2} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 45, normalized size = 1.73
method | result | size |
risch | \({\mathrm e}^{2} \ln \left (\ln \left ({\mathrm e}^{2} x \right )-3 x^{2}+16 x \right )^{2}-2 \,{\mathrm e} \ln \left (\ln \left ({\mathrm e}^{2} x \right )-3 x^{2}+16 x \right ) x +x^{2}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 40, normalized size = 1.54 \begin {gather*} -2 \, x e \log \left (-3 \, x^{2} + 16 \, x + \log \relax (x) + 2\right ) + e^{2} \log \left (-3 \, x^{2} + 16 \, x + \log \relax (x) + 2\right )^{2} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.00, size = 21, normalized size = 0.81 \begin {gather*} {\left (x-\mathrm {e}\,\ln \left (16\,x+\ln \relax (x)-3\,x^2+2\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.49, size = 48, normalized size = 1.85 \begin {gather*} x^{2} - 2 e x \log {\left (- 3 x^{2} + 16 x + \log {\left (x e^{2} \right )} \right )} + e^{2} \log {\left (- 3 x^{2} + 16 x + \log {\left (x e^{2} \right )} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________