Optimal. Leaf size=15 \[ 3 \left (e^{\frac {3}{x^2}}-3 x\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 25, normalized size of antiderivative = 1.67, number of steps used = 4, number of rules used = 3, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {14, 2209, 2288} \begin {gather*} 27 x^2-18 e^{\frac {3}{x^2}} x+3 e^{\frac {6}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {36 e^{\frac {6}{x^2}}}{x^3}+54 x-\frac {18 e^{\frac {3}{x^2}} \left (-6+x^2\right )}{x^2}\right ) \, dx\\ &=27 x^2-18 \int \frac {e^{\frac {3}{x^2}} \left (-6+x^2\right )}{x^2} \, dx-36 \int \frac {e^{\frac {6}{x^2}}}{x^3} \, dx\\ &=3 e^{\frac {6}{x^2}}-18 e^{\frac {3}{x^2}} x+27 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 15, normalized size = 1.00 \begin {gather*} 3 \left (e^{\frac {3}{x^2}}-3 x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 23, normalized size = 1.53 \begin {gather*} 27 \, x^{2} - 18 \, x e^{\left (\frac {3}{x^{2}}\right )} + 3 \, e^{\left (\frac {6}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 1.53 \begin {gather*} 27 \, x^{2} - 18 \, x e^{\left (\frac {3}{x^{2}}\right )} + 3 \, e^{\left (\frac {6}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 24, normalized size = 1.60
method | result | size |
derivativedivides | \(27 x^{2}-18 x \,{\mathrm e}^{\frac {3}{x^{2}}}+3 \,{\mathrm e}^{\frac {6}{x^{2}}}\) | \(24\) |
default | \(27 x^{2}-18 x \,{\mathrm e}^{\frac {3}{x^{2}}}+3 \,{\mathrm e}^{\frac {6}{x^{2}}}\) | \(24\) |
risch | \(27 x^{2}-18 x \,{\mathrm e}^{\frac {3}{x^{2}}}+3 \,{\mathrm e}^{\frac {6}{x^{2}}}\) | \(24\) |
norman | \(\frac {27 x^{4}-18 \,{\mathrm e}^{\frac {3}{x^{2}}} x^{3}+3 \,{\mathrm e}^{\frac {6}{x^{2}}} x^{2}}{x^{2}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 66, normalized size = 4.40 \begin {gather*} -9 \, \sqrt {3} x \sqrt {-\frac {1}{x^{2}}} \Gamma \left (-\frac {1}{2}, -\frac {3}{x^{2}}\right ) + 27 \, x^{2} - \frac {18 \, \sqrt {3} \sqrt {\pi } {\left (\operatorname {erf}\left (\sqrt {3} \sqrt {-\frac {1}{x^{2}}}\right ) - 1\right )}}{x \sqrt {-\frac {1}{x^{2}}}} + 3 \, e^{\left (\frac {6}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 16, normalized size = 1.07 \begin {gather*} 3\,{\left (3\,x-{\mathrm {e}}^{\frac {3}{x^2}}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 1.47 \begin {gather*} 27 x^{2} - 18 x e^{\frac {3}{x^{2}}} + 3 e^{\frac {6}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________