Optimal. Leaf size=17 \[ \frac {x}{5}+\left (3+2^{2 x}\right )^2 x \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 67, normalized size of antiderivative = 3.94, number of steps used = 6, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {12, 2176, 2194} \begin {gather*} \frac {46 x}{5}+\frac {3\ 2^{2 x} (2 x \log (2)+1)}{\log (2)}+\frac {2^{4 x-2} (4 x \log (2)+1)}{\log (2)}-\frac {3\ 2^{2 x}}{\log (2)}-\frac {2^{4 x-2}}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (46+2^{4 x} (5+20 x \log (2))+2^{2 x} (30+60 x \log (2))\right ) \, dx\\ &=\frac {46 x}{5}+\frac {1}{5} \int 2^{4 x} (5+20 x \log (2)) \, dx+\frac {1}{5} \int 2^{2 x} (30+60 x \log (2)) \, dx\\ &=\frac {46 x}{5}+\frac {3\ 2^{2 x} (1+2 x \log (2))}{\log (2)}+\frac {2^{-2+4 x} (1+4 x \log (2))}{\log (2)}-6 \int 2^{2 x} \, dx-\int 2^{4 x} \, dx\\ &=\frac {46 x}{5}-\frac {3\ 2^{2 x}}{\log (2)}-\frac {2^{-2+4 x}}{\log (2)}+\frac {3\ 2^{2 x} (1+2 x \log (2))}{\log (2)}+\frac {2^{-2+4 x} (1+4 x \log (2))}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 1.65 \begin {gather*} \frac {1}{5} \left (46 x+5\ 16^x x+\frac {15\ 4^{1+x} x \log (2)}{\log (4)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 19, normalized size = 1.12 \begin {gather*} 2^{4 \, x} x + 6 \cdot 2^{2 \, x} x + \frac {46}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 19, normalized size = 1.12 \begin {gather*} 2^{4 \, x} x + 6 \cdot 2^{2 \, x} x + \frac {46}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 18, normalized size = 1.06
method | result | size |
risch | \(\frac {46 x}{5}+x 4^{2 x}+6 \,4^{x} x\) | \(18\) |
default | \(\frac {46 x}{5}+x \,{\mathrm e}^{4 x \ln \relax (2)}+6 \,{\mathrm e}^{2 x \ln \relax (2)} x\) | \(24\) |
norman | \(\frac {46 x}{5}+x \,{\mathrm e}^{4 x \ln \relax (2)}+6 \,{\mathrm e}^{2 x \ln \relax (2)} x\) | \(24\) |
derivativedivides | \(\frac {92 x \ln \relax (2)+10 \ln \relax (2) {\mathrm e}^{4 x \ln \relax (2)} x +60 \ln \relax (2) {\mathrm e}^{2 x \ln \relax (2)} x}{10 \ln \relax (2)}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 42, normalized size = 2.47 \begin {gather*} 6 \cdot 2^{2 \, x} x + \frac {46}{5} \, x + \frac {{\left (4 \, x \log \relax (2) - 1\right )} 2^{4 \, x}}{4 \, \log \relax (2)} + \frac {2^{4 \, x - 2}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 19, normalized size = 1.12 \begin {gather*} \frac {x\,\left (30\,2^{2\,x}+5\,2^{4\,x}+46\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 1.53 \begin {gather*} x e^{4 x \log {\relax (2 )}} + 6 x e^{2 x \log {\relax (2 )}} + \frac {46 x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________