Optimal. Leaf size=27 \[ 3 \left (x+\log \left (\frac {5-e^{x^2}-e^{x+x^2}}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15-15 x+e^{x^2} \left (-3+3 x+6 x^2\right )+e^{x+x^2} \left (-3+6 x+6 x^2\right )}{-5 x+e^{x^2} x+e^{x+x^2} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {15 \left (e^x+2 x+2 e^x x\right )}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )}+\frac {3 \left (-1-e^x+x+2 e^x x+2 x^2+2 e^x x^2\right )}{\left (1+e^x\right ) x}\right ) \, dx\\ &=3 \int \frac {-1-e^x+x+2 e^x x+2 x^2+2 e^x x^2}{\left (1+e^x\right ) x} \, dx+15 \int \frac {e^x+2 x+2 e^x x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx\\ &=3 \int \left (-\frac {1}{1+e^x}+\frac {-1+2 x+2 x^2}{x}\right ) \, dx+15 \int \left (\frac {e^x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )}+\frac {2 x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )}+\frac {2 e^x x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )}\right ) \, dx\\ &=-\left (3 \int \frac {1}{1+e^x} \, dx\right )+3 \int \frac {-1+2 x+2 x^2}{x} \, dx+15 \int \frac {e^x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {e^x x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx\\ &=3 \int \left (2-\frac {1}{x}+2 x\right ) \, dx-3 \operatorname {Subst}\left (\int \frac {1}{x (1+x)} \, dx,x,e^x\right )+15 \int \frac {e^x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {e^x x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx\\ &=6 x+3 x^2-3 \log (x)-3 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+3 \operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,e^x\right )+15 \int \frac {e^x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {e^x x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx\\ &=3 x+3 x^2+3 \log \left (1+e^x\right )-3 \log (x)+15 \int \frac {e^x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx+30 \int \frac {e^x x}{\left (1+e^x\right ) \left (-5+e^{x^2}+e^{x+x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 27, normalized size = 1.00 \begin {gather*} 3 \left (x+\log \left (5-e^{x^2}-e^{x+x^2}\right )-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 23, normalized size = 0.85 \begin {gather*} 3 \, x - 3 \, \log \relax (x) + 3 \, \log \left (e^{\left (x^{2} + x\right )} + e^{\left (x^{2}\right )} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 23, normalized size = 0.85 \begin {gather*} 3 \, x - 3 \, \log \relax (x) + 3 \, \log \left (e^{\left (x^{2} + x\right )} + e^{\left (x^{2}\right )} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 0.89
method | result | size |
norman | \(3 x -3 \ln \relax (x )+3 \ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{x^{2}+x}-5\right )\) | \(24\) |
risch | \(3 x -3 \ln \relax (x )+3 \ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{\left (x +1\right ) x}-5\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 36, normalized size = 1.33 \begin {gather*} 3 \, x - 3 \, \log \relax (x) + 3 \, \log \left (\frac {{\left (e^{x} + 1\right )} e^{\left (x^{2}\right )} - 5}{e^{x} + 1}\right ) + 3 \, \log \left (e^{x} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 24, normalized size = 0.89 \begin {gather*} 3\,x+3\,\ln \left ({\mathrm {e}}^{x^2}+{\mathrm {e}}^{x^2}\,{\mathrm {e}}^x-5\right )-3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 0.89 \begin {gather*} 3 x - 3 \log {\relax (x )} + 3 \log {\left (e^{x^{2}} + e^{x^{2} + x} - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________