Optimal. Leaf size=33 \[ \log \left (\frac {e^{x/5}}{-5+\log \left (e^{1-e^5}-e^{5+2 x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.53, antiderivative size = 31, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 6, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {2282, 12, 6742, 2390, 2302, 29} \begin {gather*} \frac {x}{5}-\log \left (-\log \left (1-e^{2 x+e^5+4}\right )+e^5+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2282
Rule 2302
Rule 2390
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {4-e^5 (-1+x)-14 x+(-1+x) \log (1-x)}{5 (1-x) x \left (4 \left (1+\frac {e^5}{4}\right )-\log (1-x)\right )} \, dx,x,e^{4+e^5+2 x}\right )\\ &=\frac {1}{10} \operatorname {Subst}\left (\int \frac {4-e^5 (-1+x)-14 x+(-1+x) \log (1-x)}{(1-x) x \left (4 \left (1+\frac {e^5}{4}\right )-\log (1-x)\right )} \, dx,x,e^{4+e^5+2 x}\right )\\ &=\frac {1}{10} \operatorname {Subst}\left (\int \left (\frac {1}{x}+\frac {10}{(-1+x) \left (4 \left (1+\frac {e^5}{4}\right )-\log (1-x)\right )}\right ) \, dx,x,e^{4+e^5+2 x}\right )\\ &=\frac {x}{5}+\operatorname {Subst}\left (\int \frac {1}{(-1+x) \left (4 \left (1+\frac {e^5}{4}\right )-\log (1-x)\right )} \, dx,x,e^{4+e^5+2 x}\right )\\ &=\frac {x}{5}+\operatorname {Subst}\left (\int \frac {1}{x \left (4 \left (1+\frac {e^5}{4}\right )-\log (x)\right )} \, dx,x,1-e^{4+e^5+2 x}\right )\\ &=\frac {x}{5}-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,4 \left (1+\frac {e^5}{4}\right )-\log \left (1-e^{4+e^5+2 x}\right )\right )\\ &=\frac {x}{5}-\log \left (4 \left (1+\frac {e^5}{4}\right )-\log \left (1-e^{4+e^5+2 x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 31, normalized size = 0.94 \begin {gather*} \frac {1}{5} \left (x-5 \log \left (4+e^5-\log \left (1-e^{4+e^5+2 x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 29, normalized size = 0.88 \begin {gather*} \frac {1}{5} \, x - \log \left (\log \left (-{\left (e^{\left (2 \, x + e^{5} + 4\right )} - 1\right )} e^{\left (-e^{5} + 1\right )}\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 59, normalized size = 1.79 \begin {gather*} \frac {1}{5} \, x + \frac {1}{10} \, \log \left (e^{\left (2 \, x + e^{5} + 4\right )} - 1\right ) - \frac {1}{10} \, \log \left (-e^{\left (2 \, x + e^{5} + 4\right )} + 1\right ) - \log \left (\log \left ({\left (e^{5} - e^{\left (2 \, x + e^{5} + 9\right )}\right )} e^{\left (-e^{5} - 4\right )}\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 31, normalized size = 0.94
method | result | size |
risch | \(\frac {x}{5}-\ln \left (\ln \left (\left (-{\mathrm e}^{{\mathrm e}^{5}+2 x +4}+1\right ) {\mathrm e}^{1-{\mathrm e}^{5}}\right )-5\right )\) | \(31\) |
norman | \(\frac {x}{5}-\ln \left (\ln \left (\left (-{\mathrm e}^{5+2 x} {\mathrm e}^{{\mathrm e}^{5}-1}+1\right ) {\mathrm e}^{1-{\mathrm e}^{5}}\right )-5\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 31, normalized size = 0.94 \begin {gather*} \frac {1}{5} \, x + \frac {1}{10} \, e^{5} - \log \left (-e^{5} + \log \left (-e^{\left (2 \, x + e^{5} + 4\right )} + 1\right ) - 4\right ) + \frac {2}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.97, size = 27, normalized size = 0.82 \begin {gather*} \frac {x}{5}-\ln \left (\ln \left ({\mathrm {e}}^{-{\mathrm {e}}^5}\,\mathrm {e}-{\mathrm {e}}^{2\,x+5}\right )-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 29, normalized size = 0.88 \begin {gather*} \frac {x}{5} - \log {\left (\log {\left (\frac {- e^{-1 + e^{5}} e^{2 x + 5} + 1}{e^{-1 + e^{5}}} \right )} - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________