Optimal. Leaf size=25 \[ \log \left (\frac {\log (2)}{x \log \left (1+\frac {2}{x}\right ) \log (3+4 x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.79, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 7, number of rules used = 6, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {1594, 6728, 6685, 2390, 2302, 29} \begin {gather*} -\log \left (x \log \left (\frac {2}{x}+1\right )\right )-\log (\log (4 x+3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 1594
Rule 2302
Rule 2390
Rule 6685
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-8 x-4 x^2\right ) \log \left (\frac {2+x}{x}\right )+\left (6+8 x+\left (-6-11 x-4 x^2\right ) \log \left (\frac {2+x}{x}\right )\right ) \log (3+4 x)}{x \left (6+11 x+4 x^2\right ) \log \left (\frac {2+x}{x}\right ) \log (3+4 x)} \, dx\\ &=\int \left (\frac {2-2 \log \left (\frac {2+x}{x}\right )-x \log \left (\frac {2+x}{x}\right )}{x (2+x) \log \left (1+\frac {2}{x}\right )}-\frac {4}{(3+4 x) \log (3+4 x)}\right ) \, dx\\ &=-\left (4 \int \frac {1}{(3+4 x) \log (3+4 x)} \, dx\right )+\int \frac {2-2 \log \left (\frac {2+x}{x}\right )-x \log \left (\frac {2+x}{x}\right )}{x (2+x) \log \left (1+\frac {2}{x}\right )} \, dx\\ &=-\log \left (x \log \left (1+\frac {2}{x}\right )\right )-\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,3+4 x\right )\\ &=-\log \left (x \log \left (1+\frac {2}{x}\right )\right )-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (3+4 x)\right )\\ &=-\log \left (x \log \left (1+\frac {2}{x}\right )\right )-\log (\log (3+4 x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.05, size = 25, normalized size = 1.00 \begin {gather*} -\log (x)-\log \left (\log \left (\frac {2+x}{x}\right )\right )-\log (\log (3+4 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 25, normalized size = 1.00 \begin {gather*} -\log \relax (x) - \log \left (\log \left (4 \, x + 3\right )\right ) - \log \left (\log \left (\frac {x + 2}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 26, normalized size = 1.04 \begin {gather*} -\log \relax (x) - \log \left (\log \left (x + 2\right ) - \log \relax (x)\right ) - \log \left (\log \left (4 \, x + 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 26, normalized size = 1.04
method | result | size |
default | \(-\ln \relax (x )-\ln \left (\ln \left (3+4 x \right )\right )-\ln \left (\ln \left (\frac {2}{x}+1\right )\right )\) | \(26\) |
risch | \(-\ln \relax (x )-\ln \left (\ln \left (2+x \right )-\frac {i \left (\pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-\pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )+\pi \,\mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )-2 i \ln \relax (x )\right )}{2}\right )-\ln \left (\ln \left (3+4 x \right )\right )\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 26, normalized size = 1.04 \begin {gather*} -\log \relax (x) - \log \left (\log \left (x + 2\right ) - \log \relax (x)\right ) - \log \left (\log \left (4 \, x + 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 25, normalized size = 1.00 \begin {gather*} -\ln \left (\ln \left (4\,x+3\right )\right )-\ln \relax (x)-\ln \left (\ln \left (\frac {x+2}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.80 \begin {gather*} - \log {\relax (x )} - \log {\left (\log {\left (\frac {x + 2}{x} \right )} \right )} - \log {\left (\log {\left (4 x + 3 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________