Optimal. Leaf size=26 \[ 4 e^{4-x}-\frac {4}{\log \left (-9+e^{3-x} x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.45, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6741, 6688, 12, 6742, 2194, 6686} \begin {gather*} 4 e^{4-x}-\frac {4}{\log \left (e^{3-x} x-9\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 6686
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{7-x} \left (e^{-4+x} (-4+4 x)+\left (-36 e^{-3+x}+4 x\right ) \log ^2\left (e^{3-x} \left (-9 e^{-3+x}+x\right )\right )\right )}{\left (9 e^x-e^3 x\right ) \log ^2\left (e^{3-x} \left (-9 e^{-3+x}+x\right )\right )} \, dx\\ &=\int \frac {4 e^3 \left (-1+x+\left (-9 e+e^{4-x} x\right ) \log ^2\left (-9+e^{3-x} x\right )\right )}{\left (9 e^x-e^3 x\right ) \log ^2\left (-9+e^{3-x} x\right )} \, dx\\ &=\left (4 e^3\right ) \int \frac {-1+x+\left (-9 e+e^{4-x} x\right ) \log ^2\left (-9+e^{3-x} x\right )}{\left (9 e^x-e^3 x\right ) \log ^2\left (-9+e^{3-x} x\right )} \, dx\\ &=\left (4 e^3\right ) \int \left (-e^{1-x}-\frac {-1+x}{\left (-9 e^x+e^3 x\right ) \log ^2\left (-9+e^{3-x} x\right )}\right ) \, dx\\ &=-\left (\left (4 e^3\right ) \int e^{1-x} \, dx\right )-\left (4 e^3\right ) \int \frac {-1+x}{\left (-9 e^x+e^3 x\right ) \log ^2\left (-9+e^{3-x} x\right )} \, dx\\ &=4 e^{4-x}-\frac {4}{\log \left (-9+e^{3-x} x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 32, normalized size = 1.23 \begin {gather*} 4 e^3 \left (e^{1-x}-\frac {1}{e^3 \log \left (-9+e^{3-x} x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.86, size = 52, normalized size = 2.00 \begin {gather*} \frac {4 \, {\left (e \log \left ({\left (x - 9 \, e^{\left (x - 3\right )}\right )} e^{\left (-x + 3\right )}\right ) - e^{\left (x - 3\right )}\right )} e^{\left (-x + 3\right )}}{\log \left ({\left (x - 9 \, e^{\left (x - 3\right )}\right )} e^{\left (-x + 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 44, normalized size = 1.69 \begin {gather*} \frac {4 \, {\left (x e^{4} - e^{4} \log \left (x e^{3} - 9 \, e^{x}\right ) + e^{x}\right )}}{x e^{x} - e^{x} \log \left (x e^{3} - 9 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 30, normalized size = 1.15
method | result | size |
default | \(-\frac {4}{\ln \left (\left (-9 \,{\mathrm e}^{x -3}+x \right ) {\mathrm e}^{3-x}\right )}+4 \,{\mathrm e}^{-x +4}\) | \(30\) |
norman | \(\frac {\left (-4 \,{\mathrm e}^{x -4}+4 \ln \left (\left (-9 \,{\mathrm e} \,{\mathrm e}^{x -4}+x \right ) {\mathrm e}^{-1} {\mathrm e}^{-x +4}\right )\right ) {\mathrm e}^{-x +4}}{\ln \left (\left (-9 \,{\mathrm e} \,{\mathrm e}^{x -4}+x \right ) {\mathrm e}^{-1} {\mathrm e}^{-x +4}\right )}\) | \(63\) |
risch | \(4 \,{\mathrm e}^{-x +4}-\frac {8 i}{2 \pi \mathrm {csgn}\left (i {\mathrm e}^{-x +4} \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x +4}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x +4} \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right )+\pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x +4} \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x +4}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x +4} \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{-x +4} \left (-{\mathrm e}^{x -3}+\frac {x}{9}\right )\right )^{3}-2 \pi +4 i \ln \relax (3)+2 i \ln \left ({\mathrm e}^{x -3}-\frac {x}{9}\right )-2 i \ln \left ({\mathrm e}^{x -4}\right )-2 i}\) | \(214\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 44, normalized size = 1.69 \begin {gather*} \frac {4 \, {\left (x e^{4} - e^{4} \log \left (x e^{3} - 9 \, e^{x}\right ) + e^{x}\right )}}{x e^{x} - e^{x} \log \left (x e^{3} - 9 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 24, normalized size = 0.92 \begin {gather*} 4\,{\mathrm {e}}^{4-x}-\frac {4}{\ln \left (x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3-9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 26, normalized size = 1.00 \begin {gather*} 4 e e^{3 - x} - \frac {4}{\log {\left (\left (x - 9 e^{x - 3}\right ) e^{3 - x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________