Optimal. Leaf size=31 \[ \frac {1}{16} \left (x+\frac {-5+\frac {25}{e x^2}+x^2}{5-x}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 46, normalized size of antiderivative = 1.48, number of steps used = 6, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 1594, 27, 1620} \begin {gather*} \frac {5}{16 e x^2}+\frac {1+20 e}{16 e (5-x)}+\frac {1}{16 e x}-\frac {\log (x)}{16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-250+75 x+e \left (-25 x^2+30 x^3-x^4\right )}{400 x^3-160 x^4+16 x^5} \, dx}{e}\\ &=\frac {\int \frac {-250+75 x+e \left (-25 x^2+30 x^3-x^4\right )}{x^3 \left (400-160 x+16 x^2\right )} \, dx}{e}\\ &=\frac {\int \frac {-250+75 x+e \left (-25 x^2+30 x^3-x^4\right )}{16 (-5+x)^2 x^3} \, dx}{e}\\ &=\frac {\int \frac {-250+75 x+e \left (-25 x^2+30 x^3-x^4\right )}{(-5+x)^2 x^3} \, dx}{16 e}\\ &=\frac {\int \left (\frac {1+20 e}{(-5+x)^2}-\frac {10}{x^3}-\frac {1}{x^2}-\frac {e}{x}\right ) \, dx}{16 e}\\ &=\frac {1+20 e}{16 e (5-x)}+\frac {5}{16 e x^2}+\frac {1}{16 e x}-\frac {\log (x)}{16}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 0.97 \begin {gather*} -\frac {\frac {5 \left (5+4 e x^2\right )}{(-5+x) x^2}+e \log (x)}{16 e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.64, size = 38, normalized size = 1.23 \begin {gather*} -\frac {{\left (20 \, x^{2} e + {\left (x^{3} - 5 \, x^{2}\right )} e \log \relax (x) + 25\right )} e^{\left (-1\right )}}{16 \, {\left (x^{3} - 5 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 30, normalized size = 0.97 \begin {gather*} -\frac {1}{16} \, {\left (e \log \left ({\left | x \right |}\right ) + \frac {5 \, {\left (4 \, x^{2} e + 5\right )}}{{\left (x - 5\right )} x^{2}}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 0.84
method | result | size |
risch | \(\frac {{\mathrm e}^{-1} \left (-\frac {5 x^{2} {\mathrm e}}{4}-\frac {25}{16}\right )}{x^{2} \left (x -5\right )}-\frac {\ln \relax (x )}{16}\) | \(26\) |
norman | \(\frac {-\frac {5 x^{2}}{4}-\frac {25 \,{\mathrm e}^{-1}}{16}}{x^{2} \left (x -5\right )}-\frac {\ln \relax (x )}{16}\) | \(27\) |
default | \(\frac {{\mathrm e}^{-1} \left (\frac {5}{x^{2}}+\frac {1}{x}-{\mathrm e} \ln \relax (x )-\frac {20 \,{\mathrm e}+1}{x -5}\right )}{16}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 32, normalized size = 1.03 \begin {gather*} -\frac {1}{16} \, {\left (e \log \relax (x) + \frac {5 \, {\left (4 \, x^{2} e + 5\right )}}{x^{3} - 5 \, x^{2}}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.17, size = 32, normalized size = 1.03 \begin {gather*} \frac {20\,\mathrm {e}\,x^2+25}{80\,x^2\,\mathrm {e}-16\,x^3\,\mathrm {e}}-\frac {\ln \relax (x)}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 32, normalized size = 1.03 \begin {gather*} - \frac {20 e x^{2} + 25}{16 e x^{3} - 80 e x^{2}} - \frac {\log {\relax (x )}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________