Optimal. Leaf size=23 \[ \frac {(3+x) \log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-18-6 x+9 x^2+3 x^3\right ) \log ^2(x) \log \left (2 x-x^3\right )+\log ^3(x) \left (12+4 x-18 x^2-6 x^3+\left (30+8 x-15 x^2-4 x^3\right ) \log \left (2 x-x^3\right )\right )}{\left (-2 x^6+x^8\right ) \log ^3\left (2 x-x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-18-6 x+9 x^2+3 x^3\right ) \log ^2(x) \log \left (2 x-x^3\right )+\log ^3(x) \left (12+4 x-18 x^2-6 x^3+\left (30+8 x-15 x^2-4 x^3\right ) \log \left (2 x-x^3\right )\right )}{x^6 \left (-2+x^2\right ) \log ^3\left (2 x-x^3\right )} \, dx\\ &=\int \left (\frac {2 \left (-6-2 x+9 x^2+3 x^3\right ) \log ^3(x)}{x^6 \left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )}+\frac {\log ^2(x) (9+3 x-15 \log (x)-4 x \log (x))}{x^6 \log ^2\left (x \left (2-x^2\right )\right )}\right ) \, dx\\ &=2 \int \frac {\left (-6-2 x+9 x^2+3 x^3\right ) \log ^3(x)}{x^6 \left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx+\int \frac {\log ^2(x) (9+3 x-15 \log (x)-4 x \log (x))}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx\\ &=2 \int \left (-\frac {3 \log ^3(x)}{x^6 \log ^3\left (x \left (2-x^2\right )\right )}-\frac {\log ^3(x)}{x^5 \log ^3\left (x \left (2-x^2\right )\right )}+\frac {3 \log ^3(x)}{x^4 \log ^3\left (x \left (2-x^2\right )\right )}+\frac {\log ^3(x)}{x^3 \log ^3\left (x \left (2-x^2\right )\right )}+\frac {3 \log ^3(x)}{2 x^2 \log ^3\left (x \left (2-x^2\right )\right )}+\frac {\log ^3(x)}{2 x \log ^3\left (x \left (2-x^2\right )\right )}+\frac {(3+x) \log ^3(x)}{2 \left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )}\right ) \, dx+\int \left (\frac {9 \log ^2(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )}+\frac {3 \log ^2(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )}-\frac {15 \log ^3(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )}-\frac {4 \log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\log ^3(x)}{x^5 \log ^3\left (x \left (2-x^2\right )\right )} \, dx\right )+2 \int \frac {\log ^3(x)}{x^3 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^3(x)}{x^2 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^2(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-4 \int \frac {\log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-6 \int \frac {\log ^3(x)}{x^6 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+6 \int \frac {\log ^3(x)}{x^4 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+9 \int \frac {\log ^2(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-15 \int \frac {\log ^3(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx+\int \frac {\log ^3(x)}{x \log ^3\left (x \left (2-x^2\right )\right )} \, dx+\int \frac {(3+x) \log ^3(x)}{\left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx\\ &=-\left (2 \int \frac {\log ^3(x)}{x^5 \log ^3\left (x \left (2-x^2\right )\right )} \, dx\right )+2 \int \frac {\log ^3(x)}{x^3 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^3(x)}{x^2 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^2(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-4 \int \frac {\log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-6 \int \frac {\log ^3(x)}{x^6 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+6 \int \frac {\log ^3(x)}{x^4 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+9 \int \frac {\log ^2(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-15 \int \frac {\log ^3(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx+\int \left (\frac {3 \log ^3(x)}{\left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )}+\frac {x \log ^3(x)}{\left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )}\right ) \, dx+\int \frac {\log ^3(x)}{x \log ^3\left (x \left (2-x^2\right )\right )} \, dx\\ &=-\left (2 \int \frac {\log ^3(x)}{x^5 \log ^3\left (x \left (2-x^2\right )\right )} \, dx\right )+2 \int \frac {\log ^3(x)}{x^3 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^3(x)}{x^2 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^3(x)}{\left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^2(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-4 \int \frac {\log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-6 \int \frac {\log ^3(x)}{x^6 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+6 \int \frac {\log ^3(x)}{x^4 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+9 \int \frac {\log ^2(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-15 \int \frac {\log ^3(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx+\int \frac {\log ^3(x)}{x \log ^3\left (x \left (2-x^2\right )\right )} \, dx+\int \frac {x \log ^3(x)}{\left (2-x^2\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx\\ &=-\left (2 \int \frac {\log ^3(x)}{x^5 \log ^3\left (x \left (2-x^2\right )\right )} \, dx\right )+2 \int \frac {\log ^3(x)}{x^3 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \left (\frac {\log ^3(x)}{2 \sqrt {2} \left (\sqrt {2}-x\right ) \log ^3\left (x \left (2-x^2\right )\right )}+\frac {\log ^3(x)}{2 \sqrt {2} \left (\sqrt {2}+x\right ) \log ^3\left (x \left (2-x^2\right )\right )}\right ) \, dx+3 \int \frac {\log ^3(x)}{x^2 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^2(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-4 \int \frac {\log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-6 \int \frac {\log ^3(x)}{x^6 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+6 \int \frac {\log ^3(x)}{x^4 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+9 \int \frac {\log ^2(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-15 \int \frac {\log ^3(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx+\int \left (\frac {\log ^3(x)}{2 \left (\sqrt {2}-x\right ) \log ^3\left (x \left (2-x^2\right )\right )}-\frac {\log ^3(x)}{2 \left (\sqrt {2}+x\right ) \log ^3\left (x \left (2-x^2\right )\right )}\right ) \, dx+\int \frac {\log ^3(x)}{x \log ^3\left (x \left (2-x^2\right )\right )} \, dx\\ &=\frac {1}{2} \int \frac {\log ^3(x)}{\left (\sqrt {2}-x\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx-\frac {1}{2} \int \frac {\log ^3(x)}{\left (\sqrt {2}+x\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx-2 \int \frac {\log ^3(x)}{x^5 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+2 \int \frac {\log ^3(x)}{x^3 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^3(x)}{x^2 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+3 \int \frac {\log ^2(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-4 \int \frac {\log ^3(x)}{x^5 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-6 \int \frac {\log ^3(x)}{x^6 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+6 \int \frac {\log ^3(x)}{x^4 \log ^3\left (x \left (2-x^2\right )\right )} \, dx+9 \int \frac {\log ^2(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx-15 \int \frac {\log ^3(x)}{x^6 \log ^2\left (x \left (2-x^2\right )\right )} \, dx+\frac {3 \int \frac {\log ^3(x)}{\left (\sqrt {2}-x\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx}{2 \sqrt {2}}+\frac {3 \int \frac {\log ^3(x)}{\left (\sqrt {2}+x\right ) \log ^3\left (x \left (2-x^2\right )\right )} \, dx}{2 \sqrt {2}}+\int \frac {\log ^3(x)}{x \log ^3\left (x \left (2-x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.96 \begin {gather*} \frac {(3+x) \log ^3(x)}{x^5 \log ^2\left (-x \left (-2+x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 1.00 \begin {gather*} \frac {{\left (x + 3\right )} \log \relax (x)^{3}}{x^{5} \log \left (-x^{3} + 2 \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 114, normalized size = 4.96 \begin {gather*} \frac {3 \, x^{3} \log \relax (x)^{3} + 9 \, x^{2} \log \relax (x)^{3} - 2 \, x \log \relax (x)^{3} - 6 \, \log \relax (x)^{3}}{3 \, x^{7} \log \left (-x^{2} + 2\right )^{2} + 6 \, x^{7} \log \left (-x^{2} + 2\right ) \log \relax (x) + 3 \, x^{7} \log \relax (x)^{2} - 2 \, x^{5} \log \left (-x^{2} + 2\right )^{2} - 4 \, x^{5} \log \left (-x^{2} + 2\right ) \log \relax (x) - 2 \, x^{5} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.38, size = 138, normalized size = 6.00
method | result | size |
risch | \(\frac {4 \left (3+x \right ) \ln \relax (x )^{3}}{x^{5} \left (2 i \pi +2 \ln \relax (x )+2 \ln \left (x^{2}-2\right )+i \pi \mathrm {csgn}\left (i x \left (x^{2}-2\right )\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \mathrm {csgn}\left (i x \left (x^{2}-2\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}-2\right )\right )-i \pi \,\mathrm {csgn}\left (i x \left (x^{2}-2\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x^{2}-2\right )\right )+i \pi \mathrm {csgn}\left (i x \left (x^{2}-2\right )\right )^{3}-2 i \pi \mathrm {csgn}\left (i x \left (x^{2}-2\right )\right )^{2}\right )^{2}}\) | \(138\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 48, normalized size = 2.09 \begin {gather*} \frac {{\left (x + 3\right )} \log \relax (x)^{3}}{x^{5} \log \left (-x^{2} + 2\right )^{2} + 2 \, x^{5} \log \left (-x^{2} + 2\right ) \log \relax (x) + x^{5} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.89, size = 467, normalized size = 20.30 \begin {gather*} \frac {\frac {{\ln \relax (x)}^3\,\left (x+3\right )}{x^5}-\frac {\ln \left (2\,x-x^3\right )\,{\ln \relax (x)}^2\,\left (x^2-2\right )\,\left (3\,x-15\,\ln \relax (x)-4\,x\,\ln \relax (x)+9\right )}{2\,x^5\,\left (3\,x^2-2\right )}}{{\ln \left (2\,x-x^3\right )}^2}+\frac {\frac {\left (x^2-2\right )\,\left (3\,x\,{\ln \relax (x)}^2-4\,x\,{\ln \relax (x)}^3+9\,{\ln \relax (x)}^2-15\,{\ln \relax (x)}^3\right )}{2\,x^5\,\left (3\,x^2-2\right )}-\frac {\ln \left (2\,x-x^3\right )\,\left (x^2-2\right )\,\left (48\,x^5\,{\ln \relax (x)}^3-72\,x^5\,{\ln \relax (x)}^2+18\,x^5\,\ln \relax (x)+225\,x^4\,{\ln \relax (x)}^3-270\,x^4\,{\ln \relax (x)}^2+54\,x^4\,\ln \relax (x)-160\,x^3\,{\ln \relax (x)}^3+216\,x^3\,{\ln \relax (x)}^2-48\,x^3\,\ln \relax (x)-720\,x^2\,{\ln \relax (x)}^3+792\,x^2\,{\ln \relax (x)}^2-144\,x^2\,\ln \relax (x)+64\,x\,{\ln \relax (x)}^3-96\,x\,{\ln \relax (x)}^2+24\,x\,\ln \relax (x)+300\,{\ln \relax (x)}^3-360\,{\ln \relax (x)}^2+72\,\ln \relax (x)\right )}{2\,x^5\,{\left (3\,x^2-2\right )}^3}}{\ln \left (2\,x-x^3\right )}-\frac {{\ln \relax (x)}^2\,\left (-\frac {4\,x^7}{3}-5\,x^6+\frac {20\,x^5}{3}+\frac {74\,x^4}{3}-\frac {88\,x^3}{9}-36\,x^2+\frac {32\,x}{9}+\frac {40}{3}\right )}{-x^{11}+2\,x^9-\frac {4\,x^7}{3}+\frac {8\,x^5}{27}}+\frac {{\ln \relax (x)}^3\,\left (-\frac {8\,x^7}{9}-\frac {25\,x^6}{6}+\frac {128\,x^5}{27}+\frac {65\,x^4}{3}-\frac {64\,x^3}{9}-\frac {290\,x^2}{9}+\frac {64\,x}{27}+\frac {100}{9}\right )}{-x^{11}+2\,x^9-\frac {4\,x^7}{3}+\frac {8\,x^5}{27}}+\frac {\ln \relax (x)\,\left (\frac {x^5}{3}+x^4-\frac {4\,x^3}{3}-4\,x^2+\frac {4\,x}{3}+4\right )}{x^9-\frac {4\,x^7}{3}+\frac {4\,x^5}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 1.13 \begin {gather*} \frac {x \log {\relax (x )}^{3} + 3 \log {\relax (x )}^{3}}{x^{5} \log {\left (- x^{3} + 2 x \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________