Optimal. Leaf size=23 \[ x+\frac {e^{-147+x}+x}{x \left (1+e^5+x^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.91, antiderivative size = 233, normalized size of antiderivative = 10.13, number of steps used = 16, number of rules used = 10, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6, 6741, 6742, 199, 203, 261, 288, 321, 385, 2288} \begin {gather*} \frac {\left (1+e^{10}\right ) x}{2 \left (1+e^5\right ) \left (x^2+e^5+1\right )}-\frac {e^{10} x}{\left (1+e^5\right ) \left (x^2+e^5+1\right )}-\frac {x}{x^2+e^5+1}+\frac {1}{x^2+e^5+1}-\frac {x^3}{2 \left (x^2+e^5+1\right )}+\frac {e^{x-147} \left (x^3+\left (1+e^5\right ) x\right )}{\left (x^2+e^5+1\right )^2 x^2}+\frac {3 x}{2}+\frac {\left (1+e^{10}\right ) \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{2 \left (1+e^5\right )^{3/2}}+\frac {e^5 \left (2+e^5\right ) \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{\left (1+e^5\right )^{3/2}}-\frac {3}{2} \sqrt {1+e^5} \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )+\frac {\tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{\sqrt {1+e^5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 199
Rule 203
Rule 261
Rule 288
Rule 321
Rule 385
Rule 2288
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2+e^{10} x^2-2 x^3+2 x^4+x^6+e^{-147+x} \left (-1+e^5 (-1+x)+x-3 x^2+x^3\right )+e^5 \left (2 x^2+2 x^4\right )}{\left (1+e^{10}\right ) x^2+2 x^4+x^6+e^5 \left (2 x^2+2 x^4\right )} \, dx\\ &=\int \frac {\left (1+e^{10}\right ) x^2-2 x^3+2 x^4+x^6+e^{-147+x} \left (-1+e^5 (-1+x)+x-3 x^2+x^3\right )+e^5 \left (2 x^2+2 x^4\right )}{\left (1+e^{10}\right ) x^2+2 x^4+x^6+e^5 \left (2 x^2+2 x^4\right )} \, dx\\ &=\int \frac {\left (1+e^{10}\right ) x^2-2 x^3+2 x^4+x^6+e^{-147+x} \left (-1+e^5 (-1+x)+x-3 x^2+x^3\right )+e^5 \left (2 x^2+2 x^4\right )}{x^2 \left (1+e^5+x^2\right )^2} \, dx\\ &=\int \left (\frac {1+e^{10}}{\left (1+e^5+x^2\right )^2}-\frac {2 x}{\left (1+e^5+x^2\right )^2}+\frac {2 x^2}{\left (1+e^5+x^2\right )^2}+\frac {x^4}{\left (1+e^5+x^2\right )^2}+\frac {2 e^5 \left (1+x^2\right )}{\left (1+e^5+x^2\right )^2}+\frac {e^{-147+x} \left (-1-e^5+\left (1+e^5\right ) x-3 x^2+x^3\right )}{x^2 \left (1+e^5+x^2\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x}{\left (1+e^5+x^2\right )^2} \, dx\right )+2 \int \frac {x^2}{\left (1+e^5+x^2\right )^2} \, dx+\left (2 e^5\right ) \int \frac {1+x^2}{\left (1+e^5+x^2\right )^2} \, dx+\left (1+e^{10}\right ) \int \frac {1}{\left (1+e^5+x^2\right )^2} \, dx+\int \frac {x^4}{\left (1+e^5+x^2\right )^2} \, dx+\int \frac {e^{-147+x} \left (-1-e^5+\left (1+e^5\right ) x-3 x^2+x^3\right )}{x^2 \left (1+e^5+x^2\right )^2} \, dx\\ &=\frac {1}{1+e^5+x^2}-\frac {x}{1+e^5+x^2}-\frac {e^{10} x}{\left (1+e^5\right ) \left (1+e^5+x^2\right )}+\frac {\left (1+e^{10}\right ) x}{2 \left (1+e^5\right ) \left (1+e^5+x^2\right )}-\frac {x^3}{2 \left (1+e^5+x^2\right )}+\frac {e^{-147+x} \left (\left (1+e^5\right ) x+x^3\right )}{x^2 \left (1+e^5+x^2\right )^2}+\frac {3}{2} \int \frac {x^2}{1+e^5+x^2} \, dx+\frac {\left (e^5 \left (2+e^5\right )\right ) \int \frac {1}{1+e^5+x^2} \, dx}{1+e^5}+\frac {\left (1+e^{10}\right ) \int \frac {1}{1+e^5+x^2} \, dx}{2 \left (1+e^5\right )}+\int \frac {1}{1+e^5+x^2} \, dx\\ &=\frac {3 x}{2}+\frac {1}{1+e^5+x^2}-\frac {x}{1+e^5+x^2}-\frac {e^{10} x}{\left (1+e^5\right ) \left (1+e^5+x^2\right )}+\frac {\left (1+e^{10}\right ) x}{2 \left (1+e^5\right ) \left (1+e^5+x^2\right )}-\frac {x^3}{2 \left (1+e^5+x^2\right )}+\frac {e^{-147+x} \left (\left (1+e^5\right ) x+x^3\right )}{x^2 \left (1+e^5+x^2\right )^2}+\frac {\tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{\sqrt {1+e^5}}+\frac {e^5 \left (2+e^5\right ) \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{\left (1+e^5\right )^{3/2}}+\frac {\left (1+e^{10}\right ) \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{2 \left (1+e^5\right )^{3/2}}-\frac {1}{2} \left (3 \left (1+e^5\right )\right ) \int \frac {1}{1+e^5+x^2} \, dx\\ &=\frac {3 x}{2}+\frac {1}{1+e^5+x^2}-\frac {x}{1+e^5+x^2}-\frac {e^{10} x}{\left (1+e^5\right ) \left (1+e^5+x^2\right )}+\frac {\left (1+e^{10}\right ) x}{2 \left (1+e^5\right ) \left (1+e^5+x^2\right )}-\frac {x^3}{2 \left (1+e^5+x^2\right )}+\frac {e^{-147+x} \left (\left (1+e^5\right ) x+x^3\right )}{x^2 \left (1+e^5+x^2\right )^2}+\frac {\tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{\sqrt {1+e^5}}-\frac {3}{2} \sqrt {1+e^5} \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )+\frac {e^5 \left (2+e^5\right ) \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{\left (1+e^5\right )^{3/2}}+\frac {\left (1+e^{10}\right ) \tan ^{-1}\left (\frac {x}{\sqrt {1+e^5}}\right )}{2 \left (1+e^5\right )^{3/2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 39, normalized size = 1.70 \begin {gather*} \frac {e^x+e^{152} x^2+e^{147} x \left (1+x+x^3\right )}{e^{147} x \left (1+e^5+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 30, normalized size = 1.30 \begin {gather*} \frac {x^{4} + x^{2} e^{5} + x^{2} + x + e^{\left (x - 147\right )}}{x^{3} + x e^{5} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.82, size = 29, normalized size = 1.26
method | result | size |
risch | \(x +\frac {1}{1+x^{2}+{\mathrm e}^{5}}+\frac {{\mathrm e}^{x -147}}{x \left (1+x^{2}+{\mathrm e}^{5}\right )}\) | \(29\) |
norman | \(\frac {x^{4}+x +\left ({\mathrm e}^{5}+1\right ) x^{2}+{\mathrm e}^{x -147}}{x \left (1+x^{2}+{\mathrm e}^{5}\right )}\) | \(31\) |
default | \(\frac {2 x}{\left (4 \,{\mathrm e}^{5}+4\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}+\frac {2 \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right )}{\left (4 \,{\mathrm e}^{5}+4\right ) \sqrt {{\mathrm e}^{5}+1}}+x +\frac {\left ({\mathrm e}^{10}+2 \,{\mathrm e}^{5}+1\right ) x}{2 \left ({\mathrm e}^{5}+1\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}-\frac {3 \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right ) {\mathrm e}^{10}}{2 \left ({\mathrm e}^{5}+1\right )^{\frac {3}{2}}}-\frac {3 \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right ) {\mathrm e}^{5}}{\left ({\mathrm e}^{5}+1\right )^{\frac {3}{2}}}-\frac {3 \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right )}{2 \left ({\mathrm e}^{5}+1\right )^{\frac {3}{2}}}+\frac {2 \,{\mathrm e}^{10} x}{\left (4 \,{\mathrm e}^{5}+4\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}+\frac {2 \,{\mathrm e}^{10} \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right )}{\left (4 \,{\mathrm e}^{5}+4\right ) \sqrt {{\mathrm e}^{5}+1}}+{\mathrm e}^{-147} \left (\frac {{\mathrm e}^{x}}{2 \left ({\mathrm e}^{5}+1\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}-\frac {i \left (2 i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+2 i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )+{\mathrm e}^{5} {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )-{\mathrm e}^{5} {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )+{\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )-{\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )\right )}{4 \left ({\mathrm e}^{5}+1\right )^{\frac {5}{2}}}-\frac {\expIntegralEi \left (1, -x \right )}{\left ({\mathrm e}^{5}+1\right )^{2}}\right )+{\mathrm e}^{-147} \left (-\frac {{\mathrm e}^{x}}{2 \left (1+x^{2}+{\mathrm e}^{5}\right )}+\frac {i \left ({\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )-{\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )\right )}{4 \sqrt {{\mathrm e}^{5}+1}}\right )+{\mathrm e}^{-147} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{x}}{2 \left ({\mathrm e}^{5}+1\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}-\frac {i \left (2 i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+2 i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )+{\mathrm e}^{5} {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )-{\mathrm e}^{5} {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )+{\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )-{\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )\right )}{4 \left ({\mathrm e}^{5}+1\right )^{\frac {5}{2}}}-\frac {\expIntegralEi \left (1, -x \right )}{\left ({\mathrm e}^{5}+1\right )^{2}}\right )+\frac {1}{1+x^{2}+{\mathrm e}^{5}}-\frac {x}{1+x^{2}+{\mathrm e}^{5}}+\frac {\arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right )}{\sqrt {{\mathrm e}^{5}+1}}+\frac {4 \,{\mathrm e}^{5} x}{\left (4 \,{\mathrm e}^{5}+4\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}+\frac {4 \,{\mathrm e}^{5} \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right )}{\left (4 \,{\mathrm e}^{5}+4\right ) \sqrt {{\mathrm e}^{5}+1}}-\frac {{\mathrm e}^{5} x}{1+x^{2}+{\mathrm e}^{5}}+\frac {{\mathrm e}^{5} \arctan \left (\frac {x}{\sqrt {{\mathrm e}^{5}+1}}\right )}{\sqrt {{\mathrm e}^{5}+1}}-{\mathrm e}^{-147} \left (-\frac {{\mathrm e}^{x} \left (3 x^{2}+2 \,{\mathrm e}^{5}+2\right )}{2 \left ({\mathrm e}^{5}+1\right )^{2} \left (1+x^{2}+{\mathrm e}^{5}\right ) x}+\frac {i \left (i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )-3 \,{\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+3 \,{\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )\right )}{4 \left ({\mathrm e}^{5}+1\right )^{\frac {5}{2}}}-\frac {\expIntegralEi \left (1, -x \right )}{\left ({\mathrm e}^{5}+1\right )^{2}}\right )-3 \,{\mathrm e}^{-147} \left (\frac {{\mathrm e}^{x} x}{2 \left ({\mathrm e}^{5}+1\right ) \left (1+x^{2}+{\mathrm e}^{5}\right )}-\frac {i \left (i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )-{\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+{\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )\right )}{4 \left ({\mathrm e}^{5}+1\right )^{\frac {3}{2}}}\right )-{\mathrm e}^{-147} {\mathrm e}^{5} \left (-\frac {{\mathrm e}^{x} \left (3 x^{2}+2 \,{\mathrm e}^{5}+2\right )}{2 \left ({\mathrm e}^{5}+1\right )^{2} \left (1+x^{2}+{\mathrm e}^{5}\right ) x}+\frac {i \left (i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+i \sqrt {{\mathrm e}^{5}+1}\, {\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )-3 \,{\mathrm e}^{i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x +i \sqrt {{\mathrm e}^{5}+1}\right )+3 \,{\mathrm e}^{-i \sqrt {{\mathrm e}^{5}+1}} \expIntegralEi \left (1, -x -i \sqrt {{\mathrm e}^{5}+1}\right )\right )}{4 \left ({\mathrm e}^{5}+1\right )^{\frac {5}{2}}}-\frac {\expIntegralEi \left (1, -x \right )}{\left ({\mathrm e}^{5}+1\right )^{2}}\right )\) | \(1383\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 242, normalized size = 10.52 \begin {gather*} \frac {1}{2} \, {\left (\frac {x}{x^{2} {\left (e^{5} + 1\right )} + e^{10} + 2 \, e^{5} + 1} + \frac {\arctan \left (\frac {x}{\sqrt {e^{5} + 1}}\right )}{{\left (e^{5} + 1\right )}^{\frac {3}{2}}}\right )} e^{10} + {\left (\frac {\arctan \left (\frac {x}{\sqrt {e^{5} + 1}}\right )}{\sqrt {e^{5} + 1}} - \frac {x}{x^{2} + e^{5} + 1}\right )} e^{5} + {\left (\frac {x}{x^{2} {\left (e^{5} + 1\right )} + e^{10} + 2 \, e^{5} + 1} + \frac {\arctan \left (\frac {x}{\sqrt {e^{5} + 1}}\right )}{{\left (e^{5} + 1\right )}^{\frac {3}{2}}}\right )} e^{5} - \frac {3}{2} \, \sqrt {e^{5} + 1} \arctan \left (\frac {x}{\sqrt {e^{5} + 1}}\right ) + x + \frac {x {\left (e^{5} + 1\right )}}{2 \, {\left (x^{2} + e^{5} + 1\right )}} + \frac {\arctan \left (\frac {x}{\sqrt {e^{5} + 1}}\right )}{\sqrt {e^{5} + 1}} + \frac {x}{2 \, {\left (x^{2} {\left (e^{5} + 1\right )} + e^{10} + 2 \, e^{5} + 1\right )}} - \frac {x}{x^{2} + e^{5} + 1} + \frac {e^{x}}{x^{3} e^{147} + x {\left (e^{152} + e^{147}\right )}} + \frac {\arctan \left (\frac {x}{\sqrt {e^{5} + 1}}\right )}{2 \, {\left (e^{5} + 1\right )}^{\frac {3}{2}}} + \frac {1}{x^{2} + e^{5} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 21, normalized size = 0.91 \begin {gather*} x+\frac {x+{\mathrm {e}}^{x-147}}{x\,\left (x^2+{\mathrm {e}}^5+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 26, normalized size = 1.13 \begin {gather*} x + \frac {e^{x - 147}}{x^{3} + x + x e^{5}} + \frac {1}{x^{2} + 1 + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________