Optimal. Leaf size=32 \[ x+\frac {x+4 \left (-x+\frac {1}{3} \left (-x+e^{1-x} x\right )\right )}{\log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 51, normalized size of antiderivative = 1.59, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 2176, 2194} \begin {gather*} -\frac {4 e^{1-x} (1-x)}{3 \log (5)}-\frac {x (13-\log (125))}{3 \log (5)}+\frac {4 e^{1-x}}{3 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-13+e^{1-x} (4-4 x)+3 \log (5)\right ) \, dx}{3 \log (5)}\\ &=-\frac {x (13-\log (125))}{3 \log (5)}+\frac {\int e^{1-x} (4-4 x) \, dx}{3 \log (5)}\\ &=-\frac {4 e^{1-x} (1-x)}{3 \log (5)}-\frac {x (13-\log (125))}{3 \log (5)}-\frac {4 \int e^{1-x} \, dx}{3 \log (5)}\\ &=\frac {4 e^{1-x}}{3 \log (5)}-\frac {4 e^{1-x} (1-x)}{3 \log (5)}-\frac {x (13-\log (125))}{3 \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 0.81 \begin {gather*} \frac {-13 x+4 e^{1-x} x+x \log (125)}{3 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 24, normalized size = 0.75 \begin {gather*} \frac {4 \, x e^{\left (-x + 1\right )} + 3 \, x \log \relax (5) - 13 \, x}{3 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.11, size = 24, normalized size = 0.75 \begin {gather*} \frac {4 \, x e^{\left (-x + 1\right )} + 3 \, x \log \relax (5) - 13 \, x}{3 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.72
method | result | size |
risch | \(\frac {4 x \,{\mathrm e}^{1-x}}{3 \ln \relax (5)}+x -\frac {13 x}{3 \ln \relax (5)}\) | \(23\) |
norman | \(\frac {4 x \,{\mathrm e}^{1-x}}{3 \ln \relax (5)}+\frac {\left (3 \ln \relax (5)-13\right ) x}{3 \ln \relax (5)}\) | \(28\) |
default | \(\frac {-13 x -4 \,{\mathrm e}^{1-x} \left (1-x \right )+4 \,{\mathrm e}^{1-x}+3 x \ln \relax (5)}{3 \ln \relax (5)}\) | \(37\) |
derivativedivides | \(-\frac {-13+13 x +4 \,{\mathrm e}^{1-x} \left (1-x \right )-4 \,{\mathrm e}^{1-x}+3 \left (1-x \right ) \ln \relax (5)}{3 \ln \relax (5)}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 24, normalized size = 0.75 \begin {gather*} \frac {4 \, x e^{\left (-x + 1\right )} + 3 \, x \log \relax (5) - 13 \, x}{3 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.08, size = 22, normalized size = 0.69 \begin {gather*} \frac {4\,x\,{\mathrm {e}}^{1-x}+x\,\left (\ln \left (125\right )-13\right )}{3\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 26, normalized size = 0.81 \begin {gather*} \frac {4 x e^{1 - x}}{3 \log {\relax (5 )}} + \frac {x \left (-13 + 3 \log {\relax (5 )}\right )}{3 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________