Optimal. Leaf size=32 \[ -3+e^{4 \left (-1+\frac {4 \left (x+\frac {2}{\log (\log (5))}\right )}{-4+\frac {(1+x)^2}{x}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {32 x+\left (-4+8 x+12 x^2\right ) \log (\log (5))}{\left (1-2 x+x^2\right ) \log (\log (5))}\right ) (-32-32 x-32 x \log (\log (5)))}{\left (-1+3 x-3 x^2+x^3\right ) \log (\log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {32 x+\left (-4+8 x+12 x^2\right ) \log (\log (5))}{\left (1-2 x+x^2\right ) \log (\log (5))}\right ) (-32+x (-32-32 \log (\log (5))))}{\left (-1+3 x-3 x^2+x^3\right ) \log (\log (5))} \, dx\\ &=\frac {\int \frac {\exp \left (\frac {32 x+\left (-4+8 x+12 x^2\right ) \log (\log (5))}{\left (1-2 x+x^2\right ) \log (\log (5))}\right ) (-32+x (-32-32 \log (\log (5))))}{-1+3 x-3 x^2+x^3} \, dx}{\log (\log (5))}\\ &=\frac {\int \frac {\exp \left (\frac {-4 \log (\log (5))+12 x^2 \log (\log (5))+8 x (4+\log (\log (5)))}{\left (1-2 x+x^2\right ) \log (\log (5))}\right ) (32-x (-32-32 \log (\log (5))))}{1-3 x+3 x^2-x^3} \, dx}{\log (\log (5))}\\ &=\frac {\int \frac {32 \exp \left (-\frac {4 \left (\log (\log (5))-3 x^2 \log (\log (5))-2 x (4+\log (\log (5)))\right )}{(-1+x)^2 \log (\log (5))}\right ) (1+x (1+\log (\log (5))))}{(1-x)^3} \, dx}{\log (\log (5))}\\ &=\frac {32 \int \frac {\exp \left (-\frac {4 \left (\log (\log (5))-3 x^2 \log (\log (5))-2 x (4+\log (\log (5)))\right )}{(-1+x)^2 \log (\log (5))}\right ) (1+x (1+\log (\log (5))))}{(1-x)^3} \, dx}{\log (\log (5))}\\ &=\frac {32 \int \left (\frac {\exp \left (-\frac {4 \left (\log (\log (5))-3 x^2 \log (\log (5))-2 x (4+\log (\log (5)))\right )}{(-1+x)^2 \log (\log (5))}\right ) (-2-\log (\log (5)))}{(-1+x)^3}+\frac {\exp \left (-\frac {4 \left (\log (\log (5))-3 x^2 \log (\log (5))-2 x (4+\log (\log (5)))\right )}{(-1+x)^2 \log (\log (5))}\right ) (-1-\log (\log (5)))}{(-1+x)^2}\right ) \, dx}{\log (\log (5))}\\ &=\frac {(32 (-2-\log (\log (5)))) \int \frac {\exp \left (-\frac {4 \left (\log (\log (5))-3 x^2 \log (\log (5))-2 x (4+\log (\log (5)))\right )}{(-1+x)^2 \log (\log (5))}\right )}{(-1+x)^3} \, dx}{\log (\log (5))}+\frac {(32 (-1-\log (\log (5)))) \int \frac {\exp \left (-\frac {4 \left (\log (\log (5))-3 x^2 \log (\log (5))-2 x (4+\log (\log (5)))\right )}{(-1+x)^2 \log (\log (5))}\right )}{(-1+x)^2} \, dx}{\log (\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 35, normalized size = 1.09 \begin {gather*} e^{\frac {-4 \log (\log (5))+12 x^2 \log (\log (5))+8 x (4+\log (\log (5)))}{(-1+x)^2 \log (\log (5))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 36, normalized size = 1.12 \begin {gather*} e^{\left (\frac {4 \, {\left ({\left (3 \, x^{2} + 2 \, x - 1\right )} \log \left (\log \relax (5)\right ) + 8 \, x\right )}}{{\left (x^{2} - 2 \, x + 1\right )} \log \left (\log \relax (5)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 100, normalized size = 3.12 \begin {gather*} e^{\left (\frac {12 \, x^{2} \log \left (\log \relax (5)\right )}{x^{2} \log \left (\log \relax (5)\right ) - 2 \, x \log \left (\log \relax (5)\right ) + \log \left (\log \relax (5)\right )} + \frac {8 \, x \log \left (\log \relax (5)\right )}{x^{2} \log \left (\log \relax (5)\right ) - 2 \, x \log \left (\log \relax (5)\right ) + \log \left (\log \relax (5)\right )} + \frac {32 \, x}{x^{2} \log \left (\log \relax (5)\right ) - 2 \, x \log \left (\log \relax (5)\right ) + \log \left (\log \relax (5)\right )} - \frac {4 \, \log \left (\log \relax (5)\right )}{x^{2} \log \left (\log \relax (5)\right ) - 2 \, x \log \left (\log \relax (5)\right ) + \log \left (\log \relax (5)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 37, normalized size = 1.16
method | result | size |
risch | \({\mathrm e}^{\frac {12 \ln \left (\ln \relax (5)\right ) x^{2}+8 x \ln \left (\ln \relax (5)\right )-4 \ln \left (\ln \relax (5)\right )+32 x}{\ln \left (\ln \relax (5)\right ) \left (x -1\right )^{2}}}\) | \(37\) |
gosper | \({\mathrm e}^{\frac {12 \ln \left (\ln \relax (5)\right ) x^{2}+8 x \ln \left (\ln \relax (5)\right )-4 \ln \left (\ln \relax (5)\right )+32 x}{\left (x^{2}-2 x +1\right ) \ln \left (\ln \relax (5)\right )}}\) | \(42\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {\left (12 x^{2}+8 x -4\right ) \ln \left (\ln \relax (5)\right )+32 x}{\left (x^{2}-2 x +1\right ) \ln \left (\ln \relax (5)\right )}}-2 x \,{\mathrm e}^{\frac {\left (12 x^{2}+8 x -4\right ) \ln \left (\ln \relax (5)\right )+32 x}{\left (x^{2}-2 x +1\right ) \ln \left (\ln \relax (5)\right )}}+{\mathrm e}^{\frac {\left (12 x^{2}+8 x -4\right ) \ln \left (\ln \relax (5)\right )+32 x}{\left (x^{2}-2 x +1\right ) \ln \left (\ln \relax (5)\right )}}}{\left (x -1\right )^{2}}\) | \(120\) |
default | \(\frac {-\frac {4 i \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}+\frac {32 \,{\mathrm e}^{12+\frac {16+\frac {32}{\ln \left (\ln \relax (5)\right )}}{\left (x -1\right )^{2}}+\frac {32+\frac {32}{\ln \left (\ln \relax (5)\right )}}{x -1}}}{16+\frac {32}{\ln \left (\ln \relax (5)\right )}}+\frac {192 i \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right ) \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}+\frac {128 i \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right ) \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}\, \ln \left (\ln \relax (5)\right )}-\frac {4 i \ln \left (\ln \relax (5)\right ) \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}+\frac {32 \ln \left (\ln \relax (5)\right ) {\mathrm e}^{12+\frac {16+\frac {32}{\ln \left (\ln \relax (5)\right )}}{\left (x -1\right )^{2}}+\frac {32+\frac {32}{\ln \left (\ln \relax (5)\right )}}{x -1}}}{32+\frac {64}{\ln \left (\ln \relax (5)\right )}}+\frac {64 i \ln \left (\ln \relax (5)\right ) \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right ) \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}}{\ln \left (\ln \relax (5)\right )}\) | \(587\) |
derivativedivides | \(-\frac {32 \left (\frac {i \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}-\frac {{\mathrm e}^{12+\frac {16+\frac {32}{\ln \left (\ln \relax (5)\right )}}{\left (x -1\right )^{2}}+\frac {32+\frac {32}{\ln \left (\ln \relax (5)\right )}}{x -1}}}{16+\frac {32}{\ln \left (\ln \relax (5)\right )}}-\frac {6 i \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right ) \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}-\frac {4 i \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right ) \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}\, \ln \left (\ln \relax (5)\right )}+\frac {i \ln \left (\ln \relax (5)\right ) \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}-\frac {\ln \left (\ln \relax (5)\right ) {\mathrm e}^{12+\frac {16+\frac {32}{\ln \left (\ln \relax (5)\right )}}{\left (x -1\right )^{2}}+\frac {32+\frac {32}{\ln \left (\ln \relax (5)\right )}}{x -1}}}{2 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}-\frac {2 i \ln \left (\ln \relax (5)\right ) \sqrt {\pi }\, {\mathrm e}^{12-\frac {\left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )^{2}}{4 \left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}} \erf \left (\frac {4 i \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}{x -1}+\frac {i \left (32+\frac {32}{\ln \left (\ln \relax (5)\right )}\right )}{8 \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\left (16+\frac {32}{\ln \left (\ln \relax (5)\right )}\right ) \sqrt {1+\frac {2}{\ln \left (\ln \relax (5)\right )}}}\right )}{\ln \left (\ln \relax (5)\right )}\) | \(588\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 58, normalized size = 1.81 \begin {gather*} e^{\left (\frac {32}{x^{2} \log \left (\log \relax (5)\right ) - 2 \, x \log \left (\log \relax (5)\right ) + \log \left (\log \relax (5)\right )} + \frac {16}{x^{2} - 2 \, x + 1} + \frac {32}{x \log \left (\log \relax (5)\right ) - \log \left (\log \relax (5)\right )} + \frac {32}{x - 1} + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.77, size = 52, normalized size = 1.62 \begin {gather*} {\mathrm {e}}^{\frac {32\,x}{\ln \left (\ln \relax (5)\right )\,x^2-2\,\ln \left (\ln \relax (5)\right )\,x+\ln \left (\ln \relax (5)\right )}}\,{\ln \relax (5)}^{\frac {12\,x^2+8\,x-4}{\ln \left ({\ln \relax (5)}^{x^2-2\,x+1}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 32, normalized size = 1.00 \begin {gather*} e^{\frac {32 x + \left (12 x^{2} + 8 x - 4\right ) \log {\left (\log {\relax (5 )} \right )}}{\left (x^{2} - 2 x + 1\right ) \log {\left (\log {\relax (5 )} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________