Optimal. Leaf size=30 \[ \frac {5}{\log \left (\frac {\log \left (\log \left (\left (5-e^x\right )^2+(3-x) x \log (x)\right )\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 24.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15 x-50 e^x x+10 e^{2 x} x-5 x^2+\left (15 x-10 x^2\right ) \log (x)+\left (-125+50 e^x-5 e^{2 x}+\left (-15 x+5 x^2\right ) \log (x)\right ) \log \left (25-10 e^x+e^{2 x}+\left (3 x-x^2\right ) \log (x)\right ) \log \left (\log \left (25-10 e^x+e^{2 x}+\left (3 x-x^2\right ) \log (x)\right )\right )}{\left (-25 x+10 e^x x-e^{2 x} x+\left (-3 x^2+x^3\right ) \log (x)\right ) \log \left (25-10 e^x+e^{2 x}+\left (3 x-x^2\right ) \log (x)\right ) \log \left (\log \left (25-10 e^x+e^{2 x}+\left (3 x-x^2\right ) \log (x)\right )\right ) \log ^2\left (\frac {\log \left (\log \left (25-10 e^x+e^{2 x}+\left (3 x-x^2\right ) \log (x)\right )\right )}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5 \left (-47+10 e^x-x+3 \log (x)-8 x \log (x)+2 x^2 \log (x)\right )}{\left (25-10 e^x+e^{2 x}+3 x \log (x)-x^2 \log (x)\right ) \log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right ) \log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right ) \log ^2\left (\frac {\log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )}{x}\right )}-\frac {5 \left (2 x-\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right ) \log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )\right )}{x \log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right ) \log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right ) \log ^2\left (\frac {\log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )}{x}\right )}\right ) \, dx\\ &=-\left (5 \int \frac {-47+10 e^x-x+3 \log (x)-8 x \log (x)+2 x^2 \log (x)}{\left (25-10 e^x+e^{2 x}+3 x \log (x)-x^2 \log (x)\right ) \log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right ) \log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right ) \log ^2\left (\frac {\log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )}{x}\right )} \, dx\right )-5 \int \frac {2 x-\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right ) \log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )}{x \log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right ) \log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right ) \log ^2\left (\frac {\log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )}{x}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 27, normalized size = 0.90 \begin {gather*} \frac {5}{\log \left (\frac {\log \left (\log \left (\left (-5+e^x\right )^2-(-3+x) x \log (x)\right )\right )}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 32, normalized size = 1.07 \begin {gather*} \frac {5}{\log \left (\frac {\log \left (\log \left (-{\left (x^{2} - 3 \, x\right )} \log \relax (x) + e^{\left (2 \, x\right )} - 10 \, e^{x} + 25\right )\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.28, size = 34, normalized size = 1.13 \begin {gather*} -\frac {5}{\log \relax (x) - \log \left (\log \left (\log \left (-x^{2} \log \relax (x) + 3 \, x \log \relax (x) + e^{\left (2 \, x\right )} - 10 \, e^{x} + 25\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 250, normalized size = 8.33
method | result | size |
risch | \(-\frac {10 i}{\pi \,\mathrm {csgn}\left (i \ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )\right ) \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )\right ) \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )-\pi \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )}{x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 i \ln \relax (x )-2 i \ln \left (\ln \left (\ln \left (\left (-x^{2}+3 x \right ) \ln \relax (x )+{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x}+25\right )\right )\right )}\) | \(250\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.89, size = 33, normalized size = 1.10 \begin {gather*} -\frac {5}{\log \relax (x) - \log \left (\log \left (\log \left (-{\left (x^{2} - 3 \, x\right )} \log \relax (x) + e^{\left (2 \, x\right )} - 10 \, e^{x} + 25\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.93, size = 33, normalized size = 1.10 \begin {gather*} \frac {5}{\ln \left (\frac {\ln \left (\ln \left ({\mathrm {e}}^{2\,x}-10\,{\mathrm {e}}^x+\ln \relax (x)\,\left (3\,x-x^2\right )+25\right )\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________