Optimal. Leaf size=20 \[ 3+\log \left (2 e^{\frac {\log ^4(5 x)}{3 x^7}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 13, normalized size of antiderivative = 0.65, number of steps used = 10, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 14, 2305, 2304} \begin {gather*} \frac {\log ^4(5 x)}{3 x^7} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {4 \log ^3(5 x)-7 \log ^4(5 x)}{x^8} \, dx\\ &=\frac {1}{3} \int \left (\frac {4 \log ^3(5 x)}{x^8}-\frac {7 \log ^4(5 x)}{x^8}\right ) \, dx\\ &=\frac {4}{3} \int \frac {\log ^3(5 x)}{x^8} \, dx-\frac {7}{3} \int \frac {\log ^4(5 x)}{x^8} \, dx\\ &=-\frac {4 \log ^3(5 x)}{21 x^7}+\frac {\log ^4(5 x)}{3 x^7}+\frac {4}{7} \int \frac {\log ^2(5 x)}{x^8} \, dx-\frac {4}{3} \int \frac {\log ^3(5 x)}{x^8} \, dx\\ &=-\frac {4 \log ^2(5 x)}{49 x^7}+\frac {\log ^4(5 x)}{3 x^7}+\frac {8}{49} \int \frac {\log (5 x)}{x^8} \, dx-\frac {4}{7} \int \frac {\log ^2(5 x)}{x^8} \, dx\\ &=-\frac {8}{2401 x^7}-\frac {8 \log (5 x)}{343 x^7}+\frac {\log ^4(5 x)}{3 x^7}-\frac {8}{49} \int \frac {\log (5 x)}{x^8} \, dx\\ &=\frac {\log ^4(5 x)}{3 x^7}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 13, normalized size = 0.65 \begin {gather*} \frac {\log ^4(5 x)}{3 x^7} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 11, normalized size = 0.55 \begin {gather*} \frac {\log \left (5 \, x\right )^{4}}{3 \, x^{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 11, normalized size = 0.55 \begin {gather*} \frac {\log \left (5 \, x\right )^{4}}{3 \, x^{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 12, normalized size = 0.60
method | result | size |
derivativedivides | \(\frac {\ln \left (5 x \right )^{4}}{3 x^{7}}\) | \(12\) |
default | \(\frac {\ln \left (5 x \right )^{4}}{3 x^{7}}\) | \(12\) |
risch | \(\frac {\ln \left (5 x \right )^{4}}{3 x^{7}}\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 67, normalized size = 3.35 \begin {gather*} \frac {2401 \, \log \left (5 \, x\right )^{4} + 1372 \, \log \left (5 \, x\right )^{3} + 588 \, \log \left (5 \, x\right )^{2} + 168 \, \log \left (5 \, x\right ) + 24}{7203 \, x^{7}} - \frac {4 \, {\left (343 \, \log \left (5 \, x\right )^{3} + 147 \, \log \left (5 \, x\right )^{2} + 42 \, \log \left (5 \, x\right ) + 6\right )}}{7203 \, x^{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.02, size = 11, normalized size = 0.55 \begin {gather*} \frac {{\ln \left (5\,x\right )}^4}{3\,x^7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.50 \begin {gather*} \frac {\log {\left (5 x \right )}^{4}}{3 x^{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________