Optimal. Leaf size=15 \[ 2^{\frac {3 x^2}{2 e^5}}+\log (6) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 21, normalized size of antiderivative = 1.40, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 2209} \begin {gather*} \frac {2^{\frac {3 x^2}{2 e^5}-1} \log (4)}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {(3 \log (4)) \int 2^{-1+\frac {3 x^2}{2 e^5}} x \, dx}{e^5}\\ &=\frac {2^{-1+\frac {3 x^2}{2 e^5}} \log (4)}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.40 \begin {gather*} \frac {2^{-1+\frac {3 x^2}{2 e^5}} \log (64)}{\log (8)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 9, normalized size = 0.60 \begin {gather*} 2^{\frac {3}{2} \, x^{2} e^{\left (-5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 9, normalized size = 0.60 \begin {gather*} 2^{\frac {3}{2} \, x^{2} e^{\left (-5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 10, normalized size = 0.67
method | result | size |
risch | \(2^{\frac {3 \,{\mathrm e}^{-5} x^{2}}{2}}\) | \(10\) |
gosper | \({\mathrm e}^{\frac {3 x^{2} {\mathrm e}^{-5} \ln \relax (2)}{2}}\) | \(13\) |
derivativedivides | \({\mathrm e}^{\frac {3 x^{2} {\mathrm e}^{-5} \ln \relax (2)}{2}}\) | \(13\) |
default | \({\mathrm e}^{\frac {3 x^{2} {\mathrm e}^{-5} \ln \relax (2)}{2}}\) | \(13\) |
norman | \({\mathrm e}^{\frac {3 x^{2} {\mathrm e}^{-5} \ln \relax (2)}{2}}\) | \(13\) |
meijerg | \(-1+{\mathrm e}^{\frac {3 x^{2} {\mathrm e}^{-5} \ln \relax (2)}{2}}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 9, normalized size = 0.60 \begin {gather*} 2^{\frac {3}{2} \, x^{2} e^{\left (-5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 9, normalized size = 0.60 \begin {gather*} 2^{\frac {3\,x^2\,{\mathrm {e}}^{-5}}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.93 \begin {gather*} e^{\frac {3 x^{2} \log {\relax (2 )}}{2 e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________