Optimal. Leaf size=23 \[ \frac {5 e^x \left (4+\frac {3}{x}\right ) x^2}{12 \log (2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-15-20 x)+e^x \left (15+55 x+20 x^2\right ) \log (2 x)}{12 \log ^2(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int \frac {e^x (-15-20 x)+e^x \left (15+55 x+20 x^2\right ) \log (2 x)}{\log ^2(2 x)} \, dx\\ &=\frac {1}{12} \int \left (-\frac {15 e^x}{\log ^2(2 x)}-\frac {20 e^x x}{\log ^2(2 x)}+\frac {15 e^x}{\log (2 x)}+\frac {55 e^x x}{\log (2 x)}+\frac {20 e^x x^2}{\log (2 x)}\right ) \, dx\\ &=-\left (\frac {5}{4} \int \frac {e^x}{\log ^2(2 x)} \, dx\right )+\frac {5}{4} \int \frac {e^x}{\log (2 x)} \, dx-\frac {5}{3} \int \frac {e^x x}{\log ^2(2 x)} \, dx+\frac {5}{3} \int \frac {e^x x^2}{\log (2 x)} \, dx+\frac {55}{12} \int \frac {e^x x}{\log (2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 19, normalized size = 0.83 \begin {gather*} \frac {5 e^x x (3+4 x)}{12 \log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 19, normalized size = 0.83 \begin {gather*} \frac {5 \, {\left (4 \, x^{2} + 3 \, x\right )} e^{x}}{12 \, \log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 21, normalized size = 0.91 \begin {gather*} \frac {5 \, {\left (4 \, x^{2} e^{x} + 3 \, x e^{x}\right )}}{12 \, \log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.74
method | result | size |
risch | \(\frac {5 x \,{\mathrm e}^{x} \left (3+4 x \right )}{12 \ln \left (2 x \right )}\) | \(17\) |
norman | \(\frac {\frac {5 \,{\mathrm e}^{x} x}{4}+\frac {5 \,{\mathrm e}^{x} x^{2}}{3}}{\ln \left (2 x \right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 20, normalized size = 0.87 \begin {gather*} \frac {5 \, {\left (4 \, x^{2} + 3 \, x\right )} e^{x}}{12 \, {\left (\log \relax (2) + \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 26, normalized size = 1.13 \begin {gather*} \frac {15\,x^2\,{\mathrm {e}}^x+20\,x^3\,{\mathrm {e}}^x}{12\,x\,\ln \left (2\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 17, normalized size = 0.74 \begin {gather*} \frac {\left (20 x^{2} + 15 x\right ) e^{x}}{12 \log {\left (2 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________