Optimal. Leaf size=27 \[ \frac {(-2-x) \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x} \]
________________________________________________________________________________________
Rubi [C] time = 3.33, antiderivative size = 88, normalized size of antiderivative = 3.26, number of steps used = 118, number of rules used = 34, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.382, Rules used = {1594, 6688, 6728, 2418, 2394, 2393, 2391, 2315, 14, 893, 2395, 36, 31, 29, 6742, 77, 2389, 2295, 43, 2416, 2433, 2375, 2317, 2374, 6589, 2411, 2346, 2301, 2430, 2351, 2314, 2439, 2437, 2435} \begin {gather*} -4 \text {Li}_2\left (\frac {5-x}{3}\right )-4 \text {Li}_2\left (\frac {x-2}{3}\right )-2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x-2}{3}\right )-2 \log \left (\frac {5-x}{3}\right ) \log \left ((x-2)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((x-2)^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 31
Rule 36
Rule 43
Rule 77
Rule 893
Rule 1594
Rule 2295
Rule 2301
Rule 2314
Rule 2315
Rule 2317
Rule 2346
Rule 2351
Rule 2374
Rule 2375
Rule 2389
Rule 2391
Rule 2393
Rule 2394
Rule 2395
Rule 2411
Rule 2416
Rule 2418
Rule 2430
Rule 2433
Rule 2435
Rule 2437
Rule 2439
Rule 6589
Rule 6688
Rule 6728
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (20 x+6 x^2-2 x^3\right ) \log \left (\frac {1}{4} \left (25-10 x+x^2\right )\right )+\left (8 x-2 x^3+\left (20-14 x+2 x^2\right ) \log \left (\frac {1}{4} \left (25-10 x+x^2\right )\right )\right ) \log \left (4-4 x+x^2\right )}{x^2 \left (10-7 x+x^2\right )} \, dx\\ &=\int \frac {-2 x \left (-4+x^2\right ) \log \left ((-2+x)^2\right )-2 (-5+x) \log \left (\frac {1}{4} (-5+x)^2\right ) \left (x (2+x)-(-2+x) \log \left ((-2+x)^2\right )\right )}{x^2 \left (10-7 x+x^2\right )} \, dx\\ &=\int \left (-\frac {2 (2+x) \log \left (\frac {1}{4} (-5+x)^2\right )}{(-2+x) x}-\frac {2 \left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{(-5+x) x^2}\right ) \, dx\\ &=-\left (2 \int \frac {(2+x) \log \left (\frac {1}{4} (-5+x)^2\right )}{(-2+x) x} \, dx\right )-2 \int \frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{(-5+x) x^2} \, dx\\ &=-\left (2 \int \left (\frac {2 \log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x}-\frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{x}\right ) \, dx\right )-2 \int \left (\frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{25 (-5+x)}-\frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{5 x^2}-\frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{25 x}\right ) \, dx\\ &=-\left (\frac {2}{25} \int \frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{-5+x} \, dx\right )+\frac {2}{25} \int \frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{x} \, dx+\frac {2}{5} \int \frac {\left (2 x+x^2+5 \log \left (\frac {1}{4} (-5+x)^2\right )-x \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{x^2} \, dx+2 \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{x} \, dx-4 \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x} \, dx\\ &=-4 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )+2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x}{5}\right )+\frac {2}{25} \int \frac {\left (x (2+x)-(-5+x) \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{x} \, dx-\frac {2}{25} \int \left (\frac {2 x \log \left ((-2+x)^2\right )}{-5+x}+\frac {x^2 \log \left ((-2+x)^2\right )}{-5+x}+\frac {5 \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{-5+x}-\frac {x \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{-5+x}\right ) \, dx+\frac {2}{5} \int \frac {\left (x (2+x)-(-5+x) \log \left (\frac {1}{4} (-5+x)^2\right )\right ) \log \left ((-2+x)^2\right )}{x^2} \, dx-4 \int \frac {\log \left (\frac {x}{5}\right )}{-5+x} \, dx+8 \int \frac {\log \left (\frac {1}{3} (-2+x)\right )}{-5+x} \, dx\\ &=-4 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )+2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x}{5}\right )+4 \text {Li}_2\left (1-\frac {x}{5}\right )-\frac {2}{25} \int \frac {x^2 \log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {2}{25} \int \frac {x \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {2}{25} \int \left (2 \log \left ((-2+x)^2\right )+x \log \left ((-2+x)^2\right )-\log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )+\frac {5 \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{x}\right ) \, dx-\frac {4}{25} \int \frac {x \log \left ((-2+x)^2\right )}{-5+x} \, dx-\frac {2}{5} \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {2}{5} \int \left (\log \left ((-2+x)^2\right )+\frac {2 \log \left ((-2+x)^2\right )}{x}+\frac {5 \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{x^2}-\frac {\log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{x}\right ) \, dx+8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,-5+x\right )\\ &=-4 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )+2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x}{5}\right )-8 \text {Li}_2\left (\frac {5-x}{3}\right )+4 \text {Li}_2\left (1-\frac {x}{5}\right )+\frac {2}{25} \int x \log \left ((-2+x)^2\right ) \, dx-\frac {2}{25} \int \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right ) \, dx-\frac {2}{25} \int \left (5 \log \left ((-2+x)^2\right )+\frac {25 \log \left ((-2+x)^2\right )}{-5+x}+x \log \left ((-2+x)^2\right )\right ) \, dx+\frac {2}{25} \int \left (\log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )+\frac {5 \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{-5+x}\right ) \, dx+\frac {4}{25} \int \log \left ((-2+x)^2\right ) \, dx-\frac {4}{25} \int \left (\log \left ((-2+x)^2\right )+\frac {5 \log \left ((-2+x)^2\right )}{-5+x}\right ) \, dx+\frac {2}{5} \int \log \left ((-2+x)^2\right ) \, dx-\frac {2}{5} \operatorname {Subst}\left (\int \frac {\log \left (\frac {x^2}{4}\right ) \log \left ((3+x)^2\right )}{x} \, dx,x,-5+x\right )+\frac {4}{5} \int \frac {\log \left ((-2+x)^2\right )}{x} \, dx+2 \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{x^2} \, dx\\ &=-4 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )+\frac {1}{25} x^2 \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}-\frac {2}{25} x \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )-\frac {1}{10} \log ^2\left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )+2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x}{5}\right )+\frac {4}{5} \log \left ((-2+x)^2\right ) \log \left (\frac {x}{2}\right )-8 \text {Li}_2\left (\frac {5-x}{3}\right )+4 \text {Li}_2\left (1-\frac {x}{5}\right )-\frac {2}{25} \int \frac {x^2}{-2+x} \, dx-\frac {2}{25} \int x \log \left ((-2+x)^2\right ) \, dx+\frac {2}{25} \int \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right ) \, dx+\frac {4}{25} \int \frac {x \log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x} \, dx-\frac {4}{25} \int \log \left ((-2+x)^2\right ) \, dx+\frac {4}{25} \int \frac {x \log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {4}{25} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-2+x\right )+\frac {1}{5} \operatorname {Subst}\left (\int \frac {\log ^2\left (\frac {x^2}{4}\right )}{3+x} \, dx,x,-5+x\right )-\frac {2}{5} \int \log \left ((-2+x)^2\right ) \, dx+\frac {2}{5} \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {2}{5} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-2+x\right )-\frac {4}{5} \int \frac {\log \left ((-2+x)^2\right )}{-5+x} \, dx-\frac {8}{5} \int \frac {\log \left (\frac {x}{2}\right )}{-2+x} \, dx-2 \int \frac {\log \left ((-2+x)^2\right )}{-5+x} \, dx+4 \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{(-2+x) x} \, dx+4 \int \frac {\log \left ((-2+x)^2\right )}{(-5+x) x} \, dx\\ &=-\frac {28 x}{25}-4 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )+\frac {1}{5} \log ^2\left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )-\frac {14}{25} (2-x) \log \left ((-2+x)^2\right )-\frac {14}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}-\frac {1}{10} \log ^2\left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )+2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x}{5}\right )+\frac {4}{5} \log \left ((-2+x)^2\right ) \log \left (\frac {x}{2}\right )-8 \text {Li}_2\left (\frac {5-x}{3}\right )+\frac {8}{5} \text {Li}_2\left (1-\frac {x}{2}\right )+4 \text {Li}_2\left (1-\frac {x}{5}\right )+\frac {2}{25} \int \frac {x^2}{-2+x} \, dx-\frac {2}{25} \int \left (2+\frac {4}{-2+x}+x\right ) \, dx-\frac {4}{25} \int \frac {x \log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x} \, dx+\frac {4}{25} \int \left (\log \left (\frac {1}{4} (-5+x)^2\right )+\frac {2 \log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x}\right ) \, dx-\frac {4}{25} \int \frac {x \log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {4}{25} \int \left (\log \left ((-2+x)^2\right )+\frac {5 \log \left ((-2+x)^2\right )}{-5+x}\right ) \, dx-\frac {4}{25} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-2+x\right )-\frac {2}{5} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-2+x\right )+\frac {2}{5} \operatorname {Subst}\left (\int \frac {\log \left (\frac {x^2}{4}\right ) \log \left ((3+x)^2\right )}{x} \, dx,x,-5+x\right )-\frac {4}{5} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right ) \log \left (\frac {x^2}{4}\right )}{x} \, dx,x,-5+x\right )+\frac {8}{5} \int \frac {\log \left (\frac {5-x}{3}\right )}{-2+x} \, dx+4 \int \frac {\log \left (\frac {5-x}{3}\right )}{-2+x} \, dx+4 \int \left (\frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{2 (-2+x)}-\frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{2 x}\right ) \, dx+4 \int \left (\frac {\log \left ((-2+x)^2\right )}{5 (-5+x)}-\frac {\log \left ((-2+x)^2\right )}{5 x}\right ) \, dx\\ &=-\frac {4 x}{25}-\frac {x^2}{25}-\frac {8}{25} \log (2-x)-4 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )+\frac {1}{5} \log ^2\left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )-\frac {14}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}+2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {x}{5}\right )+\frac {4}{5} \log \left ((-2+x)^2\right ) \log \left (\frac {x}{2}\right )-8 \text {Li}_2\left (\frac {5-x}{3}\right )+\frac {4}{5} \log \left (\frac {1}{4} (5-x)^2\right ) \text {Li}_2\left (\frac {5-x}{3}\right )+\frac {8}{5} \text {Li}_2\left (1-\frac {x}{2}\right )+4 \text {Li}_2\left (1-\frac {x}{5}\right )+\frac {2}{25} \int \left (2+\frac {4}{-2+x}+x\right ) \, dx+\frac {4}{25} \int \log \left (\frac {1}{4} (-5+x)^2\right ) \, dx-\frac {4}{25} \int \left (\log \left (\frac {1}{4} (-5+x)^2\right )+\frac {2 \log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x}\right ) \, dx+\frac {4}{25} \int \log \left ((-2+x)^2\right ) \, dx-\frac {4}{25} \int \left (\log \left ((-2+x)^2\right )+\frac {5 \log \left ((-2+x)^2\right )}{-5+x}\right ) \, dx-\frac {1}{5} \operatorname {Subst}\left (\int \frac {\log ^2\left (\frac {x^2}{4}\right )}{3+x} \, dx,x,-5+x\right )+\frac {8}{25} \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x} \, dx+2 \left (\frac {4}{5} \int \frac {\log \left ((-2+x)^2\right )}{-5+x} \, dx\right )-\frac {4}{5} \int \frac {\log \left ((-2+x)^2\right )}{x} \, dx+\frac {8}{5} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3}\right )}{x} \, dx,x,-2+x\right )-\frac {8}{5} \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{3}\right )}{x} \, dx,x,-5+x\right )+2 \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x} \, dx-2 \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{x} \, dx+4 \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3}\right )}{x} \, dx,x,-2+x\right )\\ &=-\frac {42}{25} \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )-\frac {14}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}-8 \text {Li}_2\left (\frac {5-x}{3}\right )+\frac {4}{5} \log \left (\frac {1}{4} (5-x)^2\right ) \text {Li}_2\left (\frac {5-x}{3}\right )+\frac {8}{5} \text {Li}_2\left (1-\frac {x}{2}\right )+4 \text {Li}_2\left (1-\frac {x}{5}\right )-\frac {28}{5} \text {Li}_2\left (\frac {1}{3} (-2+x)\right )-\frac {8}{5} \text {Li}_3\left (\frac {5-x}{3}\right )-\frac {4}{25} \int \log \left (\frac {1}{4} (-5+x)^2\right ) \, dx-\frac {4}{25} \int \log \left ((-2+x)^2\right ) \, dx+\frac {4}{25} \operatorname {Subst}\left (\int \log \left (\frac {x^2}{4}\right ) \, dx,x,-5+x\right )+\frac {4}{25} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-2+x\right )-\frac {8}{25} \int \frac {\log \left (\frac {1}{4} (-5+x)^2\right )}{-2+x} \, dx-\frac {16}{25} \int \frac {\log \left (\frac {1}{3} (-2+x)\right )}{-5+x} \, dx-\frac {4}{5} \int \frac {\log \left ((-2+x)^2\right )}{-5+x} \, dx+\frac {4}{5} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right ) \log \left (\frac {x^2}{4}\right )}{x} \, dx,x,-5+x\right )+2 \left (\frac {4}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {8}{5} \int \frac {\log \left (\frac {5-x}{3}\right )}{-2+x} \, dx\right )+\frac {8}{5} \int \frac {\log \left (\frac {x}{2}\right )}{-2+x} \, dx-4 \int \frac {\log \left (\frac {1}{3} (-2+x)\right )}{-5+x} \, dx+4 \int \frac {\log \left (\frac {x}{5}\right )}{-5+x} \, dx\\ &=-\frac {16 x}{25}-\frac {4}{25} (5-x) \log \left (\frac {1}{4} (5-x)^2\right )-2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )-\frac {4}{25} (2-x) \log \left ((-2+x)^2\right )-\frac {18}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}-8 \text {Li}_2\left (\frac {5-x}{3}\right )-\frac {28}{5} \text {Li}_2\left (\frac {1}{3} (-2+x)\right )-\frac {8}{5} \text {Li}_3\left (\frac {5-x}{3}\right )-\frac {4}{25} \operatorname {Subst}\left (\int \log \left (\frac {x^2}{4}\right ) \, dx,x,-5+x\right )-\frac {4}{25} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-2+x\right )+\frac {16}{25} \int \frac {\log \left (\frac {1}{3} (-2+x)\right )}{-5+x} \, dx-\frac {16}{25} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,-5+x\right )+\frac {8}{5} \int \frac {\log \left (\frac {5-x}{3}\right )}{-2+x} \, dx+2 \left (\frac {4}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {8}{5} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3}\right )}{x} \, dx,x,-2+x\right )\right )+\frac {8}{5} \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{3}\right )}{x} \, dx,x,-5+x\right )-4 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,-5+x\right )\\ &=-2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )-\frac {18}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}-\frac {84}{25} \text {Li}_2\left (\frac {5-x}{3}\right )-\frac {28}{5} \text {Li}_2\left (\frac {1}{3} (-2+x)\right )+2 \left (\frac {4}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )+\frac {8}{5} \text {Li}_2\left (\frac {1}{3} (-2+x)\right )\right )+\frac {16}{25} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,-5+x\right )+\frac {8}{5} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3}\right )}{x} \, dx,x,-2+x\right )\\ &=-2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left (\frac {1}{3} (-2+x)\right )-\frac {18}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )-\frac {2 \log \left (\frac {1}{4} (5-x)^2\right ) \log \left ((-2+x)^2\right )}{x}-4 \text {Li}_2\left (\frac {5-x}{3}\right )-\frac {36}{5} \text {Li}_2\left (\frac {1}{3} (-2+x)\right )+2 \left (\frac {4}{5} \log \left (\frac {5-x}{3}\right ) \log \left ((-2+x)^2\right )+\frac {8}{5} \text {Li}_2\left (\frac {1}{3} (-2+x)\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 0.89 \begin {gather*} -\frac {(2+x) \log \left (\frac {1}{4} (-5+x)^2\right ) \log \left ((-2+x)^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 28, normalized size = 1.04 \begin {gather*} -\frac {{\left (x + 2\right )} \log \left (x^{2} - 4 \, x + 4\right ) \log \left (\frac {1}{4} \, x^{2} - \frac {5}{2} \, x + \frac {25}{4}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.31, size = 52, normalized size = 1.93 \begin {gather*} 2 \, {\left (\frac {2 \, \log \relax (2)}{x} - \frac {\log \left (x^{2} - 10 \, x + 25\right )}{x} - \log \left (x - 5\right )\right )} \log \left (x^{2} - 4 \, x + 4\right ) + 4 \, {\left (i \, \pi + \log \relax (2)\right )} \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.48, size = 2358, normalized size = 87.33
method | result | size |
risch | \(\text {Expression too large to display}\) | \(2358\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 27, normalized size = 1.00 \begin {gather*} \frac {4 \, {\left (x \log \relax (2) - {\left (x + 2\right )} \log \left (x - 5\right ) + 2 \, \log \relax (2)\right )} \log \left (x - 2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.52, size = 29, normalized size = 1.07 \begin {gather*} -\ln \left (x^2-4\,x+4\right )\,\ln \left (\frac {x^2}{4}-\frac {5\,x}{2}+\frac {25}{4}\right )\,\left (\frac {2}{x}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 41, normalized size = 1.52 \begin {gather*} \frac {\left (- x \log {\left (x^{2} - 4 x + 4 \right )} - 2 \log {\left (x^{2} - 4 x + 4 \right )}\right ) \log {\left (\frac {x^{2}}{4} - \frac {5 x}{2} + \frac {25}{4} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________