Optimal. Leaf size=20 \[ \frac {-5+\log \left (4 e^{-x} x\right )}{4 (-1+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 32, normalized size of antiderivative = 1.60, number of steps used = 9, number of rules used = 7, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {1594, 27, 12, 6742, 893, 2551, 29} \begin {gather*} \frac {5}{4 (1-x)}-\frac {\log \left (4 e^{-x} x\right )}{4 (1-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 29
Rule 893
Rule 1594
Rule 2551
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+7 x-x^2-x \log \left (4 e^{-x} x\right )}{x \left (4-8 x+4 x^2\right )} \, dx\\ &=\int \frac {-1+7 x-x^2-x \log \left (4 e^{-x} x\right )}{4 (-1+x)^2 x} \, dx\\ &=\frac {1}{4} \int \frac {-1+7 x-x^2-x \log \left (4 e^{-x} x\right )}{(-1+x)^2 x} \, dx\\ &=\frac {1}{4} \int \left (\frac {-1+7 x-x^2}{(-1+x)^2 x}-\frac {\log \left (4 e^{-x} x\right )}{(-1+x)^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-1+7 x-x^2}{(-1+x)^2 x} \, dx-\frac {1}{4} \int \frac {\log \left (4 e^{-x} x\right )}{(-1+x)^2} \, dx\\ &=-\frac {\log \left (4 e^{-x} x\right )}{4 (1-x)}+\frac {1}{4} \int \left (\frac {5}{(-1+x)^2}-\frac {1}{x}\right ) \, dx+\frac {1}{4} \int \frac {1}{x} \, dx\\ &=\frac {5}{4 (1-x)}-\frac {\log \left (4 e^{-x} x\right )}{4 (1-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 1.10 \begin {gather*} -\frac {5-\log \left (4 e^{-x} x\right )}{4 (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 17, normalized size = 0.85 \begin {gather*} \frac {\log \left (4 \, x e^{\left (-x\right )}\right ) - 5}{4 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 1.05 \begin {gather*} \frac {\log \relax (2) - 3}{2 \, {\left (x - 1\right )}} + \frac {\log \relax (x)}{4 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 19, normalized size = 0.95
method | result | size |
norman | \(\frac {\frac {\ln \left (4 x \,{\mathrm e}^{-x}\right )}{4}-\frac {5}{4}}{x -1}\) | \(19\) |
default | \(\frac {\ln \left (4 x \,{\mathrm e}^{-x}\right )}{4 x -4}-\frac {5}{4 \left (x -1\right )}\) | \(24\) |
risch | \(-\frac {\ln \left ({\mathrm e}^{x}\right )}{4 \left (x -1\right )}+\frac {-10-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}-i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}+4 \ln \relax (2)+2 \ln \relax (x )}{8 x -8}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 1.15 \begin {gather*} \frac {\log \left (4 \, x e^{\left (-x\right )}\right )}{4 \, {\left (x - 1\right )}} - \frac {5}{4 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.08, size = 18, normalized size = 0.90 \begin {gather*} \frac {2\,\ln \relax (2)-6\,x+\ln \relax (x)}{4\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.95 \begin {gather*} \frac {\log {\left (4 x e^{- x} \right )}}{4 x - 4} - \frac {5}{4 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________