Optimal. Leaf size=14 \[ \log \left (1+e^{13+\frac {675 \log (3)}{x^2}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 6688, 6684} \begin {gather*} \log \left (e^{13} 3^{\frac {675}{x^2}}+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((1350 \log (3)) \int \frac {e^{\frac {13 x^2+675 \log (3)}{x^2}}}{x^3+e^{\frac {13 x^2+675 \log (3)}{x^2}} x^3} \, dx\right )\\ &=-\left ((1350 \log (3)) \int \frac {3^{\frac {675}{x^2}} e^{13}}{\left (1+3^{\frac {675}{x^2}} e^{13}\right ) x^3} \, dx\right )\\ &=-\left (\left (1350 e^{13} \log (3)\right ) \int \frac {3^{\frac {675}{x^2}}}{\left (1+3^{\frac {675}{x^2}} e^{13}\right ) x^3} \, dx\right )\\ &=\log \left (1+3^{\frac {675}{x^2}} e^{13}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 14, normalized size = 1.00 \begin {gather*} \log \left (1+3^{\frac {675}{x^2}} e^{13}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 18, normalized size = 1.29 \begin {gather*} \log \left (e^{\left (\frac {13 \, x^{2} + 675 \, \log \relax (3)}{x^{2}}\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 18, normalized size = 1.29 \begin {gather*} \log \left (e^{\left (\frac {13 \, x^{2} + 675 \, \log \relax (3)}{x^{2}}\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 19, normalized size = 1.36
method | result | size |
norman | \(\ln \left ({\mathrm e}^{\frac {675 \ln \relax (3)+13 x^{2}}{x^{2}}}+1\right )\) | \(19\) |
risch | \(\frac {675 \ln \relax (3)}{x^{2}}-\frac {675 \ln \relax (3)+13 x^{2}}{x^{2}}+\ln \left ({\mathrm e}^{\frac {675 \ln \relax (3)+13 x^{2}}{x^{2}}}+1\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.03, size = 13, normalized size = 0.93 \begin {gather*} \ln \left (3^{\frac {675}{x^2}}\,{\mathrm {e}}^{13}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 1.21 \begin {gather*} \log {\left (e^{\frac {13 x^{2} + 675 \log {\relax (3 )}}{x^{2}}} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________