Optimal. Leaf size=23 \[ e^{-x (4+x)} (-2+x) (i \pi -x+\log (6)) \]
________________________________________________________________________________________
Rubi [C] time = 0.65, antiderivative size = 138, normalized size of antiderivative = 6.00, number of steps used = 24, number of rules used = 6, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {6741, 6742, 2240, 2234, 2205, 2241} \begin {gather*} -e^4 \sqrt {\pi } \text {erf}(x+2)+\frac {1}{2} e^4 \sqrt {\pi } (2+9 i \pi +9 \log (6)) \text {erf}(x+2)-\frac {9}{2} e^4 \sqrt {\pi } (\log (6)+i \pi ) \text {erf}(x+2)-e^{-x^2-4 x} x^2+2 e^{-x^2-4 x} x+e^{-x^2-4 x} x (\log (6)+i \pi )-2 e^{-x^2-4 x} (\log (6)+i \pi ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2234
Rule 2240
Rule 2241
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-4 x-x^2} \left (2+9 i \pi -10 x+2 x^3+9 \log (6)-2 x^2 (i \pi +\log (6))\right ) \, dx\\ &=\int \left (-10 e^{-4 x-x^2} x+2 e^{-4 x-x^2} x^3-2 i e^{-4 x-x^2} x^2 (\pi -i \log (6))+2 e^{-4 x-x^2} \left (1+\frac {9}{2} (i \pi +\log (6))\right )\right ) \, dx\\ &=2 \int e^{-4 x-x^2} x^3 \, dx-10 \int e^{-4 x-x^2} x \, dx-(2 i (\pi -i \log (6))) \int e^{-4 x-x^2} x^2 \, dx+(2+9 i \pi +9 \log (6)) \int e^{-4 x-x^2} \, dx\\ &=5 e^{-4 x-x^2}-e^{-4 x-x^2} x^2+e^{-4 x-x^2} x (i \pi +\log (6))+2 \int e^{-4 x-x^2} x \, dx-4 \int e^{-4 x-x^2} x^2 \, dx+20 \int e^{-4 x-x^2} \, dx-(i \pi +\log (6)) \int e^{-4 x-x^2} \, dx+(4 (i \pi +\log (6))) \int e^{-4 x-x^2} x \, dx+\left (e^4 (2+9 i \pi +9 \log (6))\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx\\ &=4 e^{-4 x-x^2}+2 e^{-4 x-x^2} x-e^{-4 x-x^2} x^2-2 e^{-4 x-x^2} (i \pi +\log (6))+e^{-4 x-x^2} x (i \pi +\log (6))+\frac {1}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (2+9 i \pi +9 \log (6))-2 \int e^{-4 x-x^2} \, dx-4 \int e^{-4 x-x^2} \, dx+8 \int e^{-4 x-x^2} x \, dx+\left (20 e^4\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx-(8 (i \pi +\log (6))) \int e^{-4 x-x^2} \, dx-\left (e^4 (i \pi +\log (6))\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx\\ &=2 e^{-4 x-x^2} x-e^{-4 x-x^2} x^2+10 e^4 \sqrt {\pi } \text {erf}(2+x)-2 e^{-4 x-x^2} (i \pi +\log (6))+e^{-4 x-x^2} x (i \pi +\log (6))-\frac {1}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (i \pi +\log (6))+\frac {1}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (2+9 i \pi +9 \log (6))-16 \int e^{-4 x-x^2} \, dx-\left (2 e^4\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx-\left (4 e^4\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx-\left (8 e^4 (i \pi +\log (6))\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx\\ &=2 e^{-4 x-x^2} x-e^{-4 x-x^2} x^2+7 e^4 \sqrt {\pi } \text {erf}(2+x)-2 e^{-4 x-x^2} (i \pi +\log (6))+e^{-4 x-x^2} x (i \pi +\log (6))-\frac {9}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (i \pi +\log (6))+\frac {1}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (2+9 i \pi +9 \log (6))-\left (16 e^4\right ) \int e^{-\frac {1}{4} (-4-2 x)^2} \, dx\\ &=2 e^{-4 x-x^2} x-e^{-4 x-x^2} x^2-e^4 \sqrt {\pi } \text {erf}(2+x)-2 e^{-4 x-x^2} (i \pi +\log (6))+e^{-4 x-x^2} x (i \pi +\log (6))-\frac {9}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (i \pi +\log (6))+\frac {1}{2} e^4 \sqrt {\pi } \text {erf}(2+x) (2+9 i \pi +9 \log (6))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 24, normalized size = 1.04 \begin {gather*} -e^{-x (4+x)} (-2+x) (-i \pi +x-\log (6)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 33, normalized size = 1.43 \begin {gather*} {\left (-2 i \, \pi + {\left (i \, \pi + 2\right )} x - x^{2} + {\left (x - 2\right )} \log \relax (6)\right )} e^{\left (-x^{2} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 44, normalized size = 1.91 \begin {gather*} {\left (-4 i \, \pi - {\left (x + 2\right )}^{2} - \pi {\left (-i \, x - 2 i\right )} + {\left (x + 2\right )} \log \relax (6) + 6 \, x - 4 \, \log \relax (6) + 4\right )} e^{\left (-x^{2} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 36, normalized size = 1.57
method | result | size |
norman | \(\left (\left (i \pi +\ln \relax (6)+2\right ) x -x^{2}-2 i \pi -2 \ln \relax (6)\right ) {\mathrm e}^{-x^{2}-4 x}\) | \(36\) |
risch | \(\left (-2 i \pi -2 \ln \relax (2)-2 \ln \relax (3)+i x \pi +x \ln \relax (2)+x \ln \relax (3)+2 x -x^{2}\right ) {\mathrm e}^{-\left (4+x \right ) x}\) | \(43\) |
default | \(\frac {9 i \pi ^{\frac {3}{2}} {\mathrm e}^{4} \erf \left (2+x \right )}{2}-2 i \pi \left (-\frac {x \,{\mathrm e}^{-x^{2}-4 x}}{2}+{\mathrm e}^{-x^{2}-4 x}+\frac {9 \sqrt {\pi }\, {\mathrm e}^{4} \erf \left (2+x \right )}{4}\right )-x^{2} {\mathrm e}^{-x^{2}-4 x}+2 x \,{\mathrm e}^{-x^{2}-4 x}+\ln \relax (6) x \,{\mathrm e}^{-x^{2}-4 x}-2 \ln \relax (6) {\mathrm e}^{-x^{2}-4 x}\) | \(109\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 269, normalized size = 11.70 \begin {gather*} \frac {9}{2} i \, \pi ^{\frac {3}{2}} \operatorname {erf}\left (x + 2\right ) e^{4} + \frac {9}{2} \, \sqrt {\pi } \operatorname {erf}\left (x + 2\right ) e^{4} \log \relax (6) + \pi {\left (\frac {i \, {\left (x + 2\right )}^{3} \Gamma \left (\frac {3}{2}, {\left (x + 2\right )}^{2}\right )}{{\left ({\left (x + 2\right )}^{2}\right )}^{\frac {3}{2}}} - \frac {4 i \, \sqrt {\pi } {\left (x + 2\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x + 2\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 2\right )}^{2}}} - 4 i \, e^{\left (-{\left (x + 2\right )}^{2}\right )}\right )} e^{4} - i \, {\left (\frac {i \, {\left (x + 2\right )}^{3} \Gamma \left (\frac {3}{2}, {\left (x + 2\right )}^{2}\right )}{{\left ({\left (x + 2\right )}^{2}\right )}^{\frac {3}{2}}} - \frac {4 i \, \sqrt {\pi } {\left (x + 2\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x + 2\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 2\right )}^{2}}} - 4 i \, e^{\left (-{\left (x + 2\right )}^{2}\right )}\right )} e^{4} \log \relax (6) + \sqrt {\pi } \operatorname {erf}\left (x + 2\right ) e^{4} + i \, {\left (-\frac {6 i \, {\left (x + 2\right )}^{3} \Gamma \left (\frac {3}{2}, {\left (x + 2\right )}^{2}\right )}{{\left ({\left (x + 2\right )}^{2}\right )}^{\frac {3}{2}}} + \frac {8 i \, \sqrt {\pi } {\left (x + 2\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x + 2\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 2\right )}^{2}}} + 12 i \, e^{\left (-{\left (x + 2\right )}^{2}\right )} + i \, \Gamma \left (2, {\left (x + 2\right )}^{2}\right )\right )} e^{4} - 5 i \, {\left (\frac {2 i \, \sqrt {\pi } {\left (x + 2\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x + 2\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 2\right )}^{2}}} + i \, e^{\left (-{\left (x + 2\right )}^{2}\right )}\right )} e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 24, normalized size = 1.04 \begin {gather*} {\mathrm {e}}^{-x^2-4\,x}\,\left (x-2\right )\,\left (\ln \relax (6)-x+\Pi \,1{}\mathrm {i}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 63, normalized size = 2.74 \begin {gather*} - \left (x^{2} e^{- 4 x} - 2 x e^{- 4 x} - x e^{- 4 x} \log {\relax (6 )} - i \pi x e^{- 4 x} + 2 e^{- 4 x} \log {\relax (6 )} + 2 i \pi e^{- 4 x}\right ) e^{- x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________