Optimal. Leaf size=18 \[ \left (e^{2 x}-x\right ) \left (16-\log \left (\frac {6561}{625}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 26, normalized size of antiderivative = 1.44, number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {2194} \begin {gather*} e^{2 x} \left (16-\log \left (\frac {6561}{625}\right )\right )-x \left (16-\log \left (\frac {6561}{625}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x \left (16-\log \left (\frac {6561}{625}\right )\right )+\left (2 \left (16-\log \left (\frac {6561}{625}\right )\right )\right ) \int e^{2 x} \, dx\\ &=e^{2 x} \left (16-\log \left (\frac {6561}{625}\right )\right )-x \left (16-\log \left (\frac {6561}{625}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.94 \begin {gather*} -\left (\left (e^{2 x}-x\right ) \left (-16+\log \left (\frac {6561}{625}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 18, normalized size = 1.00 \begin {gather*} {\left (\log \left (\frac {625}{6561}\right ) + 16\right )} e^{\left (2 \, x\right )} - x \log \left (\frac {625}{6561}\right ) - 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 18, normalized size = 1.00 \begin {gather*} {\left (\log \left (\frac {625}{6561}\right ) + 16\right )} e^{\left (2 \, x\right )} - x \log \left (\frac {625}{6561}\right ) - 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.89
method | result | size |
derivativedivides | \(\left (16+\ln \left (\frac {625}{6561}\right )\right ) \left ({\mathrm e}^{2 x}-\ln \left ({\mathrm e}^{x}\right )\right )\) | \(16\) |
default | \(-16 x +{\mathrm e}^{2 x} \ln \left (\frac {625}{6561}\right )+16 \,{\mathrm e}^{2 x}-\ln \left (\frac {625}{6561}\right ) x\) | \(23\) |
norman | \(\left (-4 \ln \relax (5)+8 \ln \relax (3)-16\right ) x +\left (4 \ln \relax (5)-8 \ln \relax (3)+16\right ) {\mathrm e}^{2 x}\) | \(29\) |
risch | \(4 \,{\mathrm e}^{2 x} \ln \relax (5)-8 \,{\mathrm e}^{2 x} \ln \relax (3)+16 \,{\mathrm e}^{2 x}-4 x \ln \relax (5)+8 x \ln \relax (3)-16 x\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 1.00 \begin {gather*} {\left (\log \left (\frac {625}{6561}\right ) + 16\right )} e^{\left (2 \, x\right )} - x \log \left (\frac {625}{6561}\right ) - 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 16, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{2\,x}\,\left (\ln \left (\frac {625}{6561}\right )+16\right )+x\,\left (\ln \left (\frac {6561}{625}\right )-16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.11, size = 29, normalized size = 1.61 \begin {gather*} x \left (-16 - 4 \log {\relax (5 )} + 8 \log {\relax (3 )}\right ) + \left (- 8 \log {\relax (3 )} + 4 \log {\relax (5 )} + 16\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________