Optimal. Leaf size=24 \[ -\frac {3}{5 \left (e^{-x} \log ^2(2)-\log (3)\right )}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.92, antiderivative size = 29, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 8, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.110, Rules used = {6741, 12, 6742, 2282, 44, 36, 29, 31} \begin {gather*} \log (x)-\frac {3 \log ^2(2)}{5 \log (3) \left (\log ^2(2)-e^x \log (3)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 44
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \log ^4(2)+5 e^{2 x} \log ^2(3)+e^x \left (-3 x \log ^2(2)-10 \log ^2(2) \log (3)\right )}{5 x \left (\log ^2(2)-e^x \log (3)\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {5 \log ^4(2)+5 e^{2 x} \log ^2(3)+e^x \left (-3 x \log ^2(2)-10 \log ^2(2) \log (3)\right )}{x \left (\log ^2(2)-e^x \log (3)\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {5}{x}-\frac {3 \log ^4(2)}{\log (3) \left (\log ^2(2)-e^x \log (3)\right )^2}+\frac {3 \log ^2(2)}{\log (3) \left (\log ^2(2)-e^x \log (3)\right )}\right ) \, dx\\ &=\log (x)+\frac {\left (3 \log ^2(2)\right ) \int \frac {1}{\log ^2(2)-e^x \log (3)} \, dx}{5 \log (3)}-\frac {\left (3 \log ^4(2)\right ) \int \frac {1}{\left (\log ^2(2)-e^x \log (3)\right )^2} \, dx}{5 \log (3)}\\ &=\log (x)+\frac {\left (3 \log ^2(2)\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (\log ^2(2)-x \log (3)\right )} \, dx,x,e^x\right )}{5 \log (3)}-\frac {\left (3 \log ^4(2)\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (\log ^2(2)-x \log (3)\right )^2} \, dx,x,e^x\right )}{5 \log (3)}\\ &=\log (x)+\frac {3}{5} \operatorname {Subst}\left (\int \frac {1}{\log ^2(2)-x \log (3)} \, dx,x,e^x\right )+\frac {3 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{5 \log (3)}-\frac {\left (3 \log ^4(2)\right ) \operatorname {Subst}\left (\int \left (\frac {1}{x \log ^4(2)}+\frac {\log (3)}{\log ^2(2) \left (\log ^2(2)-x \log (3)\right )^2}+\frac {\log (3)}{\log ^4(2) \left (\log ^2(2)-x \log (3)\right )}\right ) \, dx,x,e^x\right )}{5 \log (3)}\\ &=-\frac {3 \log ^2(2)}{5 \log (3) \left (\log ^2(2)-e^x \log (3)\right )}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 33, normalized size = 1.38 \begin {gather*} \frac {1}{5} \left (-\frac {3 \log ^2(2)}{\log (3) \left (\log ^2(2)-e^x \log (3)\right )}+5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 47, normalized size = 1.96 \begin {gather*} \frac {3 \, \log \relax (2)^{2} + 5 \, {\left (e^{x} \log \relax (3)^{2} - \log \relax (3) \log \relax (2)^{2}\right )} \log \relax (x)}{5 \, {\left (e^{x} \log \relax (3)^{2} - \log \relax (3) \log \relax (2)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 47, normalized size = 1.96 \begin {gather*} \frac {5 \, e^{x} \log \relax (3)^{2} \log \relax (x) - 5 \, \log \relax (3) \log \relax (2)^{2} \log \relax (x) + 3 \, \log \relax (2)^{2}}{5 \, {\left (e^{x} \log \relax (3)^{2} - \log \relax (3) \log \relax (2)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 22, normalized size = 0.92
method | result | size |
norman | \(\frac {3 \,{\mathrm e}^{x}}{5 \left (\ln \relax (3) {\mathrm e}^{x}-\ln \relax (2)^{2}\right )}+\ln \relax (x )\) | \(22\) |
risch | \(\ln \relax (x )+\frac {3 \ln \relax (2)^{2}}{5 \ln \relax (3) \left (\ln \relax (3) {\mathrm e}^{x}-\ln \relax (2)^{2}\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 27, normalized size = 1.12 \begin {gather*} \frac {3 \, \log \relax (2)^{2}}{5 \, {\left (e^{x} \log \relax (3)^{2} - \log \relax (3) \log \relax (2)^{2}\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 22, normalized size = 0.92 \begin {gather*} \ln \relax (x)+\frac {3\,{\mathrm {e}}^x}{5\,{\mathrm {e}}^x\,\ln \relax (3)-5\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 29, normalized size = 1.21 \begin {gather*} \log {\relax (x )} + \frac {3 \log {\relax (2 )}^{2}}{5 e^{x} \log {\relax (3 )}^{2} - 5 \log {\relax (2 )}^{2} \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________