Optimal. Leaf size=35 \[ 5+e^{1+\frac {e^{2 x} \left (-x+x^2\right )}{5 x \left (e^x+x\right )^4}}-x \]
________________________________________________________________________________________
Rubi [F] time = 28.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^{5 x}-25 e^{4 x} x-50 e^{3 x} x^2-50 e^{2 x} x^3-25 e^x x^4-5 x^5+\exp \left (\frac {5 e^{4 x}+20 e^{3 x} x+20 e^x x^3+5 x^4+e^{2 x} \left (-1+x+30 x^2\right )}{5 e^{4 x}+20 e^{3 x} x+30 e^{2 x} x^2+20 e^x x^3+5 x^4}\right ) \left (e^{3 x} (3-2 x)+e^{2 x} \left (4-5 x+2 x^2\right )\right )}{5 e^{5 x}+25 e^{4 x} x+50 e^{3 x} x^2+50 e^{2 x} x^3+25 e^x x^4+5 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 e^{5 x}-25 e^{4 x} x-50 e^{3 x} x^2-50 e^{2 x} x^3-25 e^x x^4-5 x^5+\exp \left (2 x+\frac {5 e^{4 x}+20 e^{3 x} x+20 e^x x^3+5 x^4+e^{2 x} \left (-1+x+30 x^2\right )}{5 \left (e^x+x\right )^4}\right ) \left (4+e^x (3-2 x)-5 x+2 x^2\right )}{5 \left (e^x+x\right )^5} \, dx\\ &=\frac {1}{5} \int \frac {-5 e^{5 x}-25 e^{4 x} x-50 e^{3 x} x^2-50 e^{2 x} x^3-25 e^x x^4-5 x^5+\exp \left (2 x+\frac {5 e^{4 x}+20 e^{3 x} x+20 e^x x^3+5 x^4+e^{2 x} \left (-1+x+30 x^2\right )}{5 \left (e^x+x\right )^4}\right ) \left (4+e^x (3-2 x)-5 x+2 x^2\right )}{\left (e^x+x\right )^5} \, dx\\ &=\frac {1}{5} \int \left (-\frac {5 e^{5 x}}{\left (e^x+x\right )^5}-\frac {25 e^{4 x} x}{\left (e^x+x\right )^5}-\frac {50 e^{3 x} x^2}{\left (e^x+x\right )^5}-\frac {50 e^{2 x} x^3}{\left (e^x+x\right )^5}-\frac {25 e^x x^4}{\left (e^x+x\right )^5}-\frac {5 x^5}{\left (e^x+x\right )^5}+\frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) \left (4+3 e^x-5 x-2 e^x x+2 x^2\right )}{\left (e^x+x\right )^5}\right ) \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) \left (4+3 e^x-5 x-2 e^x x+2 x^2\right )}{\left (e^x+x\right )^5} \, dx-5 \int \frac {e^{4 x} x}{\left (e^x+x\right )^5} \, dx-5 \int \frac {e^x x^4}{\left (e^x+x\right )^5} \, dx-10 \int \frac {e^{3 x} x^2}{\left (e^x+x\right )^5} \, dx-10 \int \frac {e^{2 x} x^3}{\left (e^x+x\right )^5} \, dx-\int \frac {e^{5 x}}{\left (e^x+x\right )^5} \, dx-\int \frac {x^5}{\left (e^x+x\right )^5} \, dx\\ &=\frac {5 x^4}{4 \left (e^x+x\right )^4}+\frac {1}{5} \int \left (\frac {4 \exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) (-1+x)^2}{\left (e^x+x\right )^5}-\frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) (-3+2 x)}{\left (e^x+x\right )^4}\right ) \, dx-5 \int \frac {e^{4 x} x}{\left (e^x+x\right )^5} \, dx+5 \int \frac {x^4}{\left (e^x+x\right )^5} \, dx-5 \int \frac {x^3}{\left (e^x+x\right )^4} \, dx-10 \int \frac {e^{3 x} x^2}{\left (e^x+x\right )^5} \, dx-10 \int \frac {e^{2 x} x^3}{\left (e^x+x\right )^5} \, dx-\int \frac {e^{5 x}}{\left (e^x+x\right )^5} \, dx-\int \frac {x^5}{\left (e^x+x\right )^5} \, dx\\ &=\frac {5 x^4}{4 \left (e^x+x\right )^4}-\frac {1}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) (-3+2 x)}{\left (e^x+x\right )^4} \, dx+\frac {4}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) (-1+x)^2}{\left (e^x+x\right )^5} \, dx-5 \int \frac {e^{4 x} x}{\left (e^x+x\right )^5} \, dx+5 \int \frac {x^4}{\left (e^x+x\right )^5} \, dx-5 \int \frac {x^3}{\left (e^x+x\right )^4} \, dx-10 \int \frac {e^{3 x} x^2}{\left (e^x+x\right )^5} \, dx-10 \int \frac {e^{2 x} x^3}{\left (e^x+x\right )^5} \, dx-\int \frac {e^{5 x}}{\left (e^x+x\right )^5} \, dx-\int \frac {x^5}{\left (e^x+x\right )^5} \, dx\\ &=\frac {5 x^4}{4 \left (e^x+x\right )^4}-\frac {1}{5} \int \left (-\frac {3 \exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right )}{\left (e^x+x\right )^4}+\frac {2 \exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) x}{\left (e^x+x\right )^4}\right ) \, dx+\frac {4}{5} \int \left (\frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right )}{\left (e^x+x\right )^5}-\frac {2 \exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) x}{\left (e^x+x\right )^5}+\frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) x^2}{\left (e^x+x\right )^5}\right ) \, dx-5 \int \frac {e^{4 x} x}{\left (e^x+x\right )^5} \, dx+5 \int \frac {x^4}{\left (e^x+x\right )^5} \, dx-5 \int \frac {x^3}{\left (e^x+x\right )^4} \, dx-10 \int \frac {e^{3 x} x^2}{\left (e^x+x\right )^5} \, dx-10 \int \frac {e^{2 x} x^3}{\left (e^x+x\right )^5} \, dx-\int \frac {e^{5 x}}{\left (e^x+x\right )^5} \, dx-\int \frac {x^5}{\left (e^x+x\right )^5} \, dx\\ &=\frac {5 x^4}{4 \left (e^x+x\right )^4}-\frac {2}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) x}{\left (e^x+x\right )^4} \, dx+\frac {3}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right )}{\left (e^x+x\right )^4} \, dx+\frac {4}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right )}{\left (e^x+x\right )^5} \, dx+\frac {4}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) x^2}{\left (e^x+x\right )^5} \, dx-\frac {8}{5} \int \frac {\exp \left (\frac {-e^{2 x}+5 e^{4 x}+e^{2 x} x+20 e^{3 x} x+10 e^{4 x} x+30 e^{2 x} x^2+40 e^{3 x} x^2+20 e^x x^3+60 e^{2 x} x^3+5 x^4+40 e^x x^4+10 x^5}{5 \left (e^x+x\right )^4}\right ) x}{\left (e^x+x\right )^5} \, dx-5 \int \frac {e^{4 x} x}{\left (e^x+x\right )^5} \, dx+5 \int \frac {x^4}{\left (e^x+x\right )^5} \, dx-5 \int \frac {x^3}{\left (e^x+x\right )^4} \, dx-10 \int \frac {e^{3 x} x^2}{\left (e^x+x\right )^5} \, dx-10 \int \frac {e^{2 x} x^3}{\left (e^x+x\right )^5} \, dx-\int \frac {e^{5 x}}{\left (e^x+x\right )^5} \, dx-\int \frac {x^5}{\left (e^x+x\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 56, normalized size = 1.60 \begin {gather*} \frac {1}{5} \left (5 e^{\frac {1}{5} \left (5+\frac {(-1+x) x^2}{\left (e^x+x\right )^4}-\frac {2 (-1+x) x}{\left (e^x+x\right )^3}+\frac {-1+x}{\left (e^x+x\right )^2}\right )}-5 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 79, normalized size = 2.26 \begin {gather*} -x + e^{\left (\frac {5 \, x^{4} + 20 \, x^{3} e^{x} + 20 \, x e^{\left (3 \, x\right )} + {\left (30 \, x^{2} + x - 1\right )} e^{\left (2 \, x\right )} + 5 \, e^{\left (4 \, x\right )}}{5 \, {\left (x^{4} + 4 \, x^{3} e^{x} + 6 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, x^{5} + 25 \, x^{4} e^{x} + 50 \, x^{3} e^{\left (2 \, x\right )} + 50 \, x^{2} e^{\left (3 \, x\right )} + 25 \, x e^{\left (4 \, x\right )} + {\left ({\left (2 \, x - 3\right )} e^{\left (3 \, x\right )} - {\left (2 \, x^{2} - 5 \, x + 4\right )} e^{\left (2 \, x\right )}\right )} e^{\left (\frac {5 \, x^{4} + 20 \, x^{3} e^{x} + 20 \, x e^{\left (3 \, x\right )} + {\left (30 \, x^{2} + x - 1\right )} e^{\left (2 \, x\right )} + 5 \, e^{\left (4 \, x\right )}}{5 \, {\left (x^{4} + 4 \, x^{3} e^{x} + 6 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}\right )}}\right )} + 5 \, e^{\left (5 \, x\right )}}{5 \, {\left (x^{5} + 5 \, x^{4} e^{x} + 10 \, x^{3} e^{\left (2 \, x\right )} + 10 \, x^{2} e^{\left (3 \, x\right )} + 5 \, x e^{\left (4 \, x\right )} + e^{\left (5 \, x\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.19, size = 88, normalized size = 2.51
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {20 \,{\mathrm e}^{x} x^{3}+5 x^{4}+30 \,{\mathrm e}^{2 x} x^{2}+20 x \,{\mathrm e}^{3 x}+x \,{\mathrm e}^{2 x}+5 \,{\mathrm e}^{4 x}-{\mathrm e}^{2 x}}{5 \,{\mathrm e}^{4 x}+20 x \,{\mathrm e}^{3 x}+30 \,{\mathrm e}^{2 x} x^{2}+20 \,{\mathrm e}^{x} x^{3}+5 x^{4}}}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 159, normalized size = 4.54 \begin {gather*} -{\left (x e^{\left (\frac {e^{\left (2 \, x\right )}}{5 \, {\left (x^{4} + 4 \, x^{3} e^{x} + 6 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}\right )}}\right )} - e^{\left (-\frac {e^{\left (3 \, x\right )}}{5 \, {\left (x^{4} + 4 \, x^{3} e^{x} + 6 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}\right )}} + \frac {e^{\left (2 \, x\right )}}{5 \, {\left (x^{3} + 3 \, x^{2} e^{x} + 3 \, x e^{\left (2 \, x\right )} + e^{\left (3 \, x\right )}\right )}} + 1\right )}\right )} e^{\left (-\frac {e^{\left (2 \, x\right )}}{5 \, {\left (x^{4} + 4 \, x^{3} e^{x} + 6 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.71, size = 317, normalized size = 9.06 \begin {gather*} {\mathrm {e}}^{\frac {30\,x^2\,{\mathrm {e}}^{2\,x}}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{2\,x}}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^{4\,x}}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{2\,x}}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}\,{\mathrm {e}}^{\frac {20\,x\,{\mathrm {e}}^{3\,x}}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}\,{\mathrm {e}}^{\frac {20\,x^3\,{\mathrm {e}}^x}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}\,{\mathrm {e}}^{\frac {5\,x^4}{5\,{\mathrm {e}}^{4\,x}+20\,x\,{\mathrm {e}}^{3\,x}+20\,x^3\,{\mathrm {e}}^x+30\,x^2\,{\mathrm {e}}^{2\,x}+5\,x^4}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.72, size = 83, normalized size = 2.37 \begin {gather*} - x + e^{\frac {5 x^{4} + 20 x^{3} e^{x} + 20 x e^{3 x} + \left (30 x^{2} + x - 1\right ) e^{2 x} + 5 e^{4 x}}{5 x^{4} + 20 x^{3} e^{x} + 30 x^{2} e^{2 x} + 20 x e^{3 x} + 5 e^{4 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________