Optimal. Leaf size=30 \[ 5-e^{e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}-x}+x \]
________________________________________________________________________________________
Rubi [F] time = 2.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (3 e^x x^2+e^{e^{e^{\frac {1}{3} e^{\frac {2-x^2}{x}}}}} \left (3 x^2+e^{e^{\frac {1}{3} e^{\frac {2-x^2}{x}}}+\frac {1}{3} e^{\frac {2-x^2}{x}}+\frac {2-x^2}{x}} \left (2+x^2\right )\right )\right )}{3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-x} \left (3 e^x x^2+e^{e^{e^{\frac {1}{3} e^{\frac {2-x^2}{x}}}}} \left (3 x^2+e^{e^{\frac {1}{3} e^{\frac {2-x^2}{x}}}+\frac {1}{3} e^{\frac {2-x^2}{x}}+\frac {2-x^2}{x}} \left (2+x^2\right )\right )\right )}{x^2} \, dx\\ &=\frac {1}{3} \int \left (3+3 e^{e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}-x}+\frac {\exp \left (e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}+e^{\frac {1}{3} e^{\frac {2}{x}-x}}+\frac {1}{3} e^{\frac {2}{x}-x}+\frac {2}{x}-2 x\right ) \left (2+x^2\right )}{x^2}\right ) \, dx\\ &=x+\frac {1}{3} \int \frac {\exp \left (e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}+e^{\frac {1}{3} e^{\frac {2}{x}-x}}+\frac {1}{3} e^{\frac {2}{x}-x}+\frac {2}{x}-2 x\right ) \left (2+x^2\right )}{x^2} \, dx+\int e^{e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}-x} \, dx\\ &=x+\frac {1}{3} \int \left (\exp \left (e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}+e^{\frac {1}{3} e^{\frac {2}{x}-x}}+\frac {1}{3} e^{\frac {2}{x}-x}+\frac {2}{x}-2 x\right )+\frac {2 \exp \left (e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}+e^{\frac {1}{3} e^{\frac {2}{x}-x}}+\frac {1}{3} e^{\frac {2}{x}-x}+\frac {2}{x}-2 x\right )}{x^2}\right ) \, dx+\int e^{e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}-x} \, dx\\ &=x+\frac {1}{3} \int \exp \left (e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}+e^{\frac {1}{3} e^{\frac {2}{x}-x}}+\frac {1}{3} e^{\frac {2}{x}-x}+\frac {2}{x}-2 x\right ) \, dx+\frac {2}{3} \int \frac {\exp \left (e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}+e^{\frac {1}{3} e^{\frac {2}{x}-x}}+\frac {1}{3} e^{\frac {2}{x}-x}+\frac {2}{x}-2 x\right )}{x^2} \, dx+\int e^{e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 29, normalized size = 0.97 \begin {gather*} -e^{e^{e^{\frac {1}{3} e^{\frac {2}{x}-x}}}-x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 80, normalized size = 2.67 \begin {gather*} {\left (x e^{x} - e^{\left (e^{\left (-\frac {3 \, x^{2} - 3 \, x e^{\left (\frac {1}{3} \, e^{\left (-\frac {x^{2} - 2}{x}\right )}\right )} - x e^{\left (-\frac {x^{2} - 2}{x}\right )} - 6}{3 \, x} + \frac {x^{2} - 2}{x} - \frac {1}{3} \, e^{\left (-\frac {x^{2} - 2}{x}\right )}\right )}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (3 \, x^{2} e^{x} + {\left (3 \, x^{2} + {\left (x^{2} + 2\right )} e^{\left (-\frac {x^{2} - 2}{x} + e^{\left (\frac {1}{3} \, e^{\left (-\frac {x^{2} - 2}{x}\right )}\right )} + \frac {1}{3} \, e^{\left (-\frac {x^{2} - 2}{x}\right )}\right )}\right )} e^{\left (e^{\left (e^{\left (\frac {1}{3} \, e^{\left (-\frac {x^{2} - 2}{x}\right )}\right )}\right )}\right )}\right )} e^{\left (-x\right )}}{3 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 25, normalized size = 0.83
method | result | size |
risch | \(x -{\mathrm e}^{-x +{\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{-\frac {x^{2}-2}{x}}}{3}}}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 23, normalized size = 0.77 \begin {gather*} x - e^{\left (-x + e^{\left (e^{\left (\frac {1}{3} \, e^{\left (-x + \frac {2}{x}\right )}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 27, normalized size = 0.90 \begin {gather*} -{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{2/x}}{3}}}}-x\,{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________