Optimal. Leaf size=34 \[ -e^x+3 (-5+x)-2 x-\frac {-2-x^2}{2 (x-\log (\log (2)))} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 48, normalized size of antiderivative = 1.41, number of steps used = 9, number of rules used = 5, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {27, 12, 6742, 2194, 43} \begin {gather*} \frac {3 x}{2}-e^x+\frac {1-\log ^2(\log (2))}{x-\log (\log (2))}+\frac {3 \log ^2(\log (2))}{2 (x-\log (\log (2)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+3 x^2-2 e^x x^2+\left (-6 x+4 e^x x\right ) \log (\log (2))+\left (2-2 e^x\right ) \log ^2(\log (2))}{2 (x-\log (\log (2)))^2} \, dx\\ &=\frac {1}{2} \int \frac {-2+3 x^2-2 e^x x^2+\left (-6 x+4 e^x x\right ) \log (\log (2))+\left (2-2 e^x\right ) \log ^2(\log (2))}{(x-\log (\log (2)))^2} \, dx\\ &=\frac {1}{2} \int \left (-2 e^x+\frac {3 x^2}{(x-\log (\log (2)))^2}-\frac {6 x \log (\log (2))}{(x-\log (\log (2)))^2}-\frac {2 \left (1-\log ^2(\log (2))\right )}{(x-\log (\log (2)))^2}\right ) \, dx\\ &=\frac {1-\log ^2(\log (2))}{x-\log (\log (2))}+\frac {3}{2} \int \frac {x^2}{(x-\log (\log (2)))^2} \, dx-(3 \log (\log (2))) \int \frac {x}{(x-\log (\log (2)))^2} \, dx-\int e^x \, dx\\ &=-e^x+\frac {1-\log ^2(\log (2))}{x-\log (\log (2))}+\frac {3}{2} \int \left (1+\frac {2 \log (\log (2))}{x-\log (\log (2))}+\frac {\log ^2(\log (2))}{(x-\log (\log (2)))^2}\right ) \, dx-(3 \log (\log (2))) \int \left (\frac {1}{x-\log (\log (2))}+\frac {\log (\log (2))}{(x-\log (\log (2)))^2}\right ) \, dx\\ &=-e^x+\frac {3 x}{2}+\frac {3 \log ^2(\log (2))}{2 (x-\log (\log (2)))}+\frac {1-\log ^2(\log (2))}{x-\log (\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 30, normalized size = 0.88 \begin {gather*} \frac {1}{2} \left (-2 e^x+3 x+\frac {2+\log ^2(\log (2))}{x-\log (\log (2))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 41, normalized size = 1.21 \begin {gather*} \frac {3 \, x^{2} - 2 \, x e^{x} - {\left (3 \, x - 2 \, e^{x}\right )} \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2} + 2}{2 \, {\left (x - \log \left (\log \relax (2)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 41, normalized size = 1.21 \begin {gather*} \frac {3 \, x^{2} - 2 \, x e^{x} - 3 \, x \log \left (\log \relax (2)\right ) + 2 \, e^{x} \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2} + 2}{2 \, {\left (x - \log \left (\log \relax (2)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 34, normalized size = 1.00
method | result | size |
default | \(\frac {1}{x -\ln \left (\ln \relax (2)\right )}+\frac {3 x}{2}+\frac {\ln \left (\ln \relax (2)\right )^{2}}{2 x -2 \ln \left (\ln \relax (2)\right )}-{\mathrm e}^{x}\) | \(34\) |
norman | \(\frac {{\mathrm e}^{x} x -\frac {3 x^{2}}{2}-\ln \left (\ln \relax (2)\right ) {\mathrm e}^{x}-1+\ln \left (\ln \relax (2)\right )^{2}}{\ln \left (\ln \relax (2)\right )-x}\) | \(34\) |
risch | \(\frac {3 x}{2}-\frac {\ln \left (\ln \relax (2)\right )^{2}}{2 \left (\ln \left (\ln \relax (2)\right )-x \right )}-\frac {1}{\ln \left (\ln \relax (2)\right )-x}-{\mathrm e}^{x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {e^{x}}{x^{3} - 3 \, x^{2} \log \left (\log \relax (2)\right ) + 3 \, x \log \left (\log \relax (2)\right )^{2} - \log \left (\log \relax (2)\right )^{3}}\,{d x} \log \left (\log \relax (2)\right )^{2} + \frac {E_{2}\left (-x + \log \left (\log \relax (2)\right )\right ) \log \relax (2) \log \left (\log \relax (2)\right )^{2}}{x - \log \left (\log \relax (2)\right )} + 3 \, {\left (\frac {\log \left (\log \relax (2)\right )}{x - \log \left (\log \relax (2)\right )} - \log \left (x - \log \left (\log \relax (2)\right )\right )\right )} \log \left (\log \relax (2)\right ) + 3 \, \log \left (x - \log \left (\log \relax (2)\right )\right ) \log \left (\log \relax (2)\right ) + \frac {3}{2} \, x - \frac {{\left (x^{2} - 2 \, x \log \left (\log \relax (2)\right )\right )} e^{x}}{x^{2} - 2 \, x \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}} - \frac {5 \, \log \left (\log \relax (2)\right )^{2}}{2 \, {\left (x - \log \left (\log \relax (2)\right )\right )}} + \frac {1}{x - \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 41, normalized size = 1.21 \begin {gather*} \frac {\frac {{\ln \left (\ln \relax (2)\right )}^2}{2}+1}{x-\ln \left (\ln \relax (2)\right )}-\frac {2\,{\mathrm {e}}^x\,\ln \left (\ln \relax (2)\right )-3\,x\,\ln \left (\ln \relax (2)\right )}{2\,\ln \left (\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.76 \begin {gather*} \frac {3 x}{2} - e^{x} + \frac {\log {\left (\log {\relax (2 )} \right )}^{2} + 2}{2 x - 2 \log {\left (\log {\relax (2 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________