Optimal. Leaf size=32 \[ \frac {(-x+\log (1-x))^2}{\left (e^{10-2 e^x}+x-\log \left (x^2\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 45.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2+2 x^3+\left (8 x-8 x^2+2 x^3\right ) \log (1-x)+\left (-4+6 x-2 x^2\right ) \log ^2(1-x)+e^{10-2 e^x} \left (-4 x^2+2 x^3+e^x \left (-4 x^3+4 x^4\right )+\left (4 x-2 x^2+e^x \left (8 x^2-8 x^3\right )\right ) \log (1-x)+e^x \left (-4 x+4 x^2\right ) \log ^2(1-x)\right )+\left (4 x^2-2 x^3+\left (-4 x+2 x^2\right ) \log (1-x)\right ) \log \left (x^2\right )}{-x^4+x^5+e^{30-6 e^x} \left (-x+x^2\right )+\left (3 x^3-3 x^4\right ) \log \left (x^2\right )+\left (-3 x^2+3 x^3\right ) \log ^2\left (x^2\right )+\left (x-x^2\right ) \log ^3\left (x^2\right )+e^{20-4 e^x} \left (-3 x^2+3 x^3+\left (3 x-3 x^2\right ) \log \left (x^2\right )\right )+e^{10-2 e^x} \left (-3 x^3+3 x^4+\left (6 x^2-6 x^3\right ) \log \left (x^2\right )+\left (-3 x+3 x^2\right ) \log ^2\left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{4 e^x} (x-\log (1-x)) \left (-\left ((-1+x) \left (e^{2 e^x} (-2+x)-2 e^{10+x} x\right ) \log (1-x)\right )-x \left (e^{10} (-2+x)+e^{2 e^x} (-2+x)+2 e^{10+x} (-1+x) x-e^{2 e^x} (-2+x) \log \left (x^2\right )\right )\right )}{(1-x) x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx\\ &=2 \int \frac {e^{4 e^x} (x-\log (1-x)) \left (-\left ((-1+x) \left (e^{2 e^x} (-2+x)-2 e^{10+x} x\right ) \log (1-x)\right )-x \left (e^{10} (-2+x)+e^{2 e^x} (-2+x)+2 e^{10+x} (-1+x) x-e^{2 e^x} (-2+x) \log \left (x^2\right )\right )\right )}{(1-x) x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx\\ &=2 \int \left (\frac {e^{6 e^x} (-2+x) (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}+\frac {e^{10+4 e^x} (-2+x) (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}+\frac {2 e^{10+4 e^x+x} (x-\log (1-x))^2}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}+\frac {e^{6 e^x} (-2+x) (x-\log (1-x)) \log (1-x)}{x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} (-2+x) (x-\log (1-x)) \log \left (x^2\right )}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx\\ &=2 \int \frac {e^{6 e^x} (-2+x) (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \frac {e^{10+4 e^x} (-2+x) (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \frac {e^{6 e^x} (-2+x) (x-\log (1-x)) \log (1-x)}{x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-2 \int \frac {e^{6 e^x} (-2+x) (x-\log (1-x)) \log \left (x^2\right )}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+4 \int \frac {e^{10+4 e^x+x} (x-\log (1-x))^2}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx\\ &=2 \int \frac {e^{2 \left (5+2 e^x\right )} (2-x) (x-\log (1-x))}{(1-x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \left (\frac {e^{6 e^x} (x-\log (1-x))}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx+2 \int \left (\frac {e^{6 e^x} (x-\log (1-x)) \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {2 e^{6 e^x} (x-\log (1-x)) \log (1-x)}{x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx-2 \int \left (\frac {e^{6 e^x} (x-\log (1-x)) \log \left (x^2\right )}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} (x-\log (1-x)) \log \left (x^2\right )}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx+4 \int \left (\frac {e^{10+4 e^x+x} x^2}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {2 e^{10+4 e^x+x} x \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}+\frac {e^{10+4 e^x+x} \log ^2(1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx\\ &=2 \int \frac {e^{6 e^x} (x-\log (1-x))}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-2 \int \frac {e^{6 e^x} (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \frac {e^{6 e^x} (x-\log (1-x)) \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-2 \int \frac {e^{6 e^x} (x-\log (1-x)) \log \left (x^2\right )}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \frac {e^{6 e^x} (x-\log (1-x)) \log \left (x^2\right )}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \left (\frac {e^{2 \left (5+2 e^x\right )} (x-\log (1-x))}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{2 \left (5+2 e^x\right )} (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx+4 \int \frac {e^{10+4 e^x+x} x^2}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-4 \int \frac {e^{6 e^x} (x-\log (1-x)) \log (1-x)}{x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+4 \int \frac {e^{10+4 e^x+x} \log ^2(1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-8 \int \frac {e^{10+4 e^x+x} x \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx\\ &=2 \int \frac {e^{2 \left (5+2 e^x\right )} (x-\log (1-x))}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-2 \int \frac {e^{2 \left (5+2 e^x\right )} (x-\log (1-x))}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+2 \int \left (\frac {e^{6 e^x} x}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx-2 \int \left (\frac {e^{6 e^x} x}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} \log (1-x)}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx+2 \int \left (\frac {e^{6 e^x} x \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} \log ^2(1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx+2 \int \left (\frac {e^{6 e^x} x \log \left (x^2\right )}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} \log (1-x) \log \left (x^2\right )}{(-1+x) \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx-2 \int \left (\frac {e^{6 e^x} x \log \left (x^2\right )}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}+\frac {e^{6 e^x} \log (1-x) \log \left (x^2\right )}{\left (-e^{10}-e^{2 e^x} x+e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx+4 \int \frac {e^{10+4 e^x+x} x^2}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx+4 \int \frac {e^{10+4 e^x+x} \log ^2(1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx-4 \int \left (\frac {e^{6 e^x} \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}-\frac {e^{6 e^x} \log ^2(1-x)}{x \left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3}\right ) \, dx-8 \int \frac {e^{10+4 e^x+x} x \log (1-x)}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 48, normalized size = 1.50 \begin {gather*} \frac {e^{4 e^x} (x-\log (1-x))^2}{\left (e^{10}+e^{2 e^x} x-e^{2 e^x} \log \left (x^2\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 65, normalized size = 2.03 \begin {gather*} \frac {x^{2} - 2 \, x \log \left (-x + 1\right ) + \log \left (-x + 1\right )^{2}}{x^{2} + 2 \, {\left (x - \log \left (x^{2}\right )\right )} e^{\left (-2 \, e^{x} + 10\right )} - 2 \, x \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + e^{\left (-4 \, e^{x} + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 11.50, size = 92, normalized size = 2.88
method | result | size |
risch | \(\frac {4 x^{2}-8 x \ln \left (1-x \right )+4 \ln \left (1-x \right )^{2}}{\left (2 \,{\mathrm e}^{-2 \,{\mathrm e}^{x}+10}-4 \ln \relax (x )+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 x +i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )^{2}}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.18, size = 83, normalized size = 2.59 \begin {gather*} \frac {x^{2} e^{\left (4 \, e^{x}\right )} - 2 \, x e^{\left (4 \, e^{x}\right )} \log \left (-x + 1\right ) + e^{\left (4 \, e^{x}\right )} \log \left (-x + 1\right )^{2}}{{\left (x^{2} - 4 \, x \log \relax (x) + 4 \, \log \relax (x)^{2}\right )} e^{\left (4 \, e^{x}\right )} + 2 \, {\left (x e^{10} - 2 \, e^{10} \log \relax (x)\right )} e^{\left (2 \, e^{x}\right )} + e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{10-2\,{\mathrm {e}}^x}\,\left ({\mathrm {e}}^x\,\left (4\,x^3-4\,x^4\right )-\ln \left (1-x\right )\,\left (4\,x+{\mathrm {e}}^x\,\left (8\,x^2-8\,x^3\right )-2\,x^2\right )+4\,x^2-2\,x^3+{\mathrm {e}}^x\,{\ln \left (1-x\right )}^2\,\left (4\,x-4\,x^2\right )\right )-\ln \left (1-x\right )\,\left (2\,x^3-8\,x^2+8\,x\right )+{\ln \left (1-x\right )}^2\,\left (2\,x^2-6\,x+4\right )+4\,x^2-2\,x^3+\ln \left (x^2\right )\,\left (\ln \left (1-x\right )\,\left (4\,x-2\,x^2\right )-4\,x^2+2\,x^3\right )}{{\mathrm {e}}^{10-2\,{\mathrm {e}}^x}\,\left ({\ln \left (x^2\right )}^2\,\left (3\,x-3\,x^2\right )-\ln \left (x^2\right )\,\left (6\,x^2-6\,x^3\right )+3\,x^3-3\,x^4\right )-{\ln \left (x^2\right )}^3\,\left (x-x^2\right )-{\mathrm {e}}^{20-4\,{\mathrm {e}}^x}\,\left (\ln \left (x^2\right )\,\left (3\,x-3\,x^2\right )-3\,x^2+3\,x^3\right )+{\mathrm {e}}^{30-6\,{\mathrm {e}}^x}\,\left (x-x^2\right )-\ln \left (x^2\right )\,\left (3\,x^3-3\,x^4\right )+{\ln \left (x^2\right )}^2\,\left (3\,x^2-3\,x^3\right )+x^4-x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.87, size = 63, normalized size = 1.97 \begin {gather*} \frac {x^{2} - 2 x \log {\left (1 - x \right )} + \log {\left (1 - x \right )}^{2}}{x^{2} - 2 x \log {\left (x^{2} \right )} + \left (2 x - 2 \log {\left (x^{2} \right )}\right ) e^{10 - 2 e^{x}} + e^{20 - 4 e^{x}} + \log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________