Optimal. Leaf size=27 \[ \frac {e^{-\frac {2}{3} x \left (\frac {(1-x)^2}{x}+x\right )}}{\log ^2\left (x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 40, normalized size of antiderivative = 1.48, number of steps used = 2, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {12, 2288} \begin {gather*} \frac {e^{-\frac {2}{3} \left (2 x^2-2 x+1\right )} \left (x-2 x^2\right )}{(1-2 x) x \log ^2\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-\frac {2}{3} \left (1-2 x+2 x^2\right )} \left (-12+\left (4 x-8 x^2\right ) \log \left (x^2\right )\right )}{x \log ^3\left (x^2\right )} \, dx\\ &=\frac {e^{-\frac {2}{3} \left (1-2 x+2 x^2\right )} \left (x-2 x^2\right )}{(1-2 x) x \log ^2\left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.85 \begin {gather*} \frac {e^{-\frac {2}{3} \left (1-2 x+2 x^2\right )}}{\log ^2\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 18, normalized size = 0.67 \begin {gather*} \frac {e^{\left (-\frac {4}{3} \, x^{2} + \frac {4}{3} \, x - \frac {2}{3}\right )}}{\log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 18, normalized size = 0.67 \begin {gather*} \frac {e^{\left (-\frac {4}{3} \, x^{2} + \frac {4}{3} \, x - \frac {2}{3}\right )}}{\log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 66, normalized size = 2.44
method | result | size |
risch | \(-\frac {4 \,{\mathrm e}^{-\frac {4}{3} x^{2}+\frac {4}{3} x -\frac {2}{3}}}{\left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )^{2}}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 17, normalized size = 0.63 \begin {gather*} \frac {e^{\left (-\frac {4}{3} \, x^{2} + \frac {4}{3} \, x - \frac {2}{3}\right )}}{4 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 19, normalized size = 0.70 \begin {gather*} \frac {{\mathrm {e}}^{\frac {4\,x}{3}}\,{\mathrm {e}}^{-\frac {2}{3}}\,{\mathrm {e}}^{-\frac {4\,x^2}{3}}}{{\ln \left (x^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 22, normalized size = 0.81 \begin {gather*} \frac {e^{- \frac {4 x^{2}}{3} + \frac {4 x}{3} - \frac {2}{3}}}{\log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________