Optimal. Leaf size=26 \[ -x^2+e^{9+x} \left (\frac {1}{x^2}+x-5 (e+x-\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 51, normalized size of antiderivative = 1.96, number of steps used = 17, number of rules used = 8, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {14, 6742, 2199, 2194, 2177, 2178, 2176, 2554} \begin {gather*} -x^2+\frac {e^{x+9}}{x^2}-4 e^{x+9} x+4 e^{x+9}-(4+5 e) e^{x+9}+5 e^{x+9} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 x+\frac {e^{9+x} \left (-2+x+5 x^2-4 \left (1+\frac {5 e}{4}\right ) x^3-4 x^4+5 x^3 \log (x)\right )}{x^3}\right ) \, dx\\ &=-x^2+\int \frac {e^{9+x} \left (-2+x+5 x^2-4 \left (1+\frac {5 e}{4}\right ) x^3-4 x^4+5 x^3 \log (x)\right )}{x^3} \, dx\\ &=-x^2+\int \left (\frac {e^{9+x} \left (-2+x+5 x^2-(4+5 e) x^3-4 x^4\right )}{x^3}+5 e^{9+x} \log (x)\right ) \, dx\\ &=-x^2+5 \int e^{9+x} \log (x) \, dx+\int \frac {e^{9+x} \left (-2+x+5 x^2-(4+5 e) x^3-4 x^4\right )}{x^3} \, dx\\ &=-x^2+5 e^{9+x} \log (x)-5 \int \frac {e^{9+x}}{x} \, dx+\int \left (-4 e^{9+x} \left (1+\frac {5 e}{4}\right )-\frac {2 e^{9+x}}{x^3}+\frac {e^{9+x}}{x^2}+\frac {5 e^{9+x}}{x}-4 e^{9+x} x\right ) \, dx\\ &=-x^2-5 e^9 \text {Ei}(x)+5 e^{9+x} \log (x)-2 \int \frac {e^{9+x}}{x^3} \, dx-4 \int e^{9+x} x \, dx+5 \int \frac {e^{9+x}}{x} \, dx-(4+5 e) \int e^{9+x} \, dx+\int \frac {e^{9+x}}{x^2} \, dx\\ &=-e^{9+x} (4+5 e)+\frac {e^{9+x}}{x^2}-\frac {e^{9+x}}{x}-4 e^{9+x} x-x^2+5 e^{9+x} \log (x)+4 \int e^{9+x} \, dx-\int \frac {e^{9+x}}{x^2} \, dx+\int \frac {e^{9+x}}{x} \, dx\\ &=4 e^{9+x}-e^{9+x} (4+5 e)+\frac {e^{9+x}}{x^2}-4 e^{9+x} x-x^2+e^9 \text {Ei}(x)+5 e^{9+x} \log (x)-\int \frac {e^{9+x}}{x} \, dx\\ &=4 e^{9+x}-e^{9+x} (4+5 e)+\frac {e^{9+x}}{x^2}-4 e^{9+x} x-x^2+5 e^{9+x} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 38, normalized size = 1.46 \begin {gather*} -x^2+e^x \left (-5 e^{10}+\frac {e^9}{x^2}-4 e^9 x\right )+5 e^{9+x} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 39, normalized size = 1.50 \begin {gather*} -\frac {x^{4} - 5 \, x^{2} e^{\left (x + 9\right )} \log \relax (x) + {\left (4 \, x^{3} + 5 \, x^{2} e - 1\right )} e^{\left (x + 9\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 44, normalized size = 1.69 \begin {gather*} -\frac {x^{4} + 4 \, x^{3} e^{\left (x + 9\right )} - 5 \, x^{2} e^{\left (x + 9\right )} \log \relax (x) + 5 \, x^{2} e^{\left (x + 10\right )} - e^{\left (x + 9\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 43, normalized size = 1.65
method | result | size |
risch | \(5 \,{\mathrm e}^{x +9} \ln \relax (x )-\frac {5 x^{2} {\mathrm e}^{x +10}+x^{4}+4 \,{\mathrm e}^{x +9} x^{3}-{\mathrm e}^{x +9}}{x^{2}}\) | \(43\) |
norman | \(\frac {-x^{4}-4 \,{\mathrm e}^{x +9} x^{3}-5 x^{2} {\mathrm e} \,{\mathrm e}^{x +9}+5 x^{2} {\mathrm e}^{x +9} \ln \relax (x )+{\mathrm e}^{x +9}}{x^{2}}\) | \(46\) |
default | \(\frac {-4 \,{\mathrm e}^{x +9} x^{3}-5 x^{2} {\mathrm e} \,{\mathrm e}^{x +9}+5 x^{2} {\mathrm e}^{x +9} \ln \relax (x )+{\mathrm e}^{x +9}}{x^{2}}-x^{2}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 56, normalized size = 2.15 \begin {gather*} -x^{2} - 4 \, {\left (x e^{9} - e^{9}\right )} e^{x} + e^{9} \Gamma \left (-1, -x\right ) + 2 \, e^{9} \Gamma \left (-2, -x\right ) + 5 \, e^{\left (x + 9\right )} \log \relax (x) - 5 \, e^{\left (x + 10\right )} - 4 \, e^{\left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 35, normalized size = 1.35 \begin {gather*} \frac {{\mathrm {e}}^{x+9}}{x^2}-4\,x\,{\mathrm {e}}^{x+9}-5\,{\mathrm {e}}^{x+10}+5\,{\mathrm {e}}^{x+9}\,\ln \relax (x)-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 34, normalized size = 1.31 \begin {gather*} - x^{2} + \frac {\left (- 4 x^{3} + 5 x^{2} \log {\relax (x )} - 5 e x^{2} + 1\right ) e^{x + 9}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________