Optimal. Leaf size=28 \[ e^{\frac {x}{-e^{-4 e^{e^4}}+\frac {3 x}{e^3+x}}} \]
________________________________________________________________________________________
Rubi [A] time = 4.33, antiderivative size = 38, normalized size of antiderivative = 1.36, number of steps used = 3, number of rules used = 3, integrand size = 138, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6, 6688, 6706} \begin {gather*} \exp \left (-\frac {e^{4 e^{e^4}} x \left (x+e^3\right )}{-3 e^{4 e^{e^4}} x+x+e^3}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^{4 e^{e^4}} \left (e^3 x+x^2\right )}{-e^3-x+3 e^{4 e^{e^4}} x}\right ) \left (3 e^{8 e^{e^4}} x^2+e^{4 e^{e^4}} \left (-e^6-2 e^3 x-x^2\right )\right )}{e^6+2 e^3 x+\left (1+9 e^{8 e^{e^4}}\right ) x^2+e^{4 e^{e^4}} \left (-6 e^3 x-6 x^2\right )} \, dx\\ &=\int \frac {\exp \left (4 e^{e^4}-\frac {e^{4 e^{e^4}} x \left (e^3+x\right )}{e^3+x-3 e^{4 e^{e^4}} x}\right ) \left (-e^6-2 e^3 x-\left (1-3 e^{4 e^{e^4}}\right ) x^2\right )}{\left (e^3+\left (1-3 e^{4 e^{e^4}}\right ) x\right )^2} \, dx\\ &=\exp \left (-\frac {e^{4 e^{e^4}} x \left (e^3+x\right )}{e^3+x-3 e^{4 e^{e^4}} x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 38, normalized size = 1.36 \begin {gather*} e^{-\frac {e^{4 e^{e^4}} x \left (e^3+x\right )}{e^3+x-3 e^{4 e^{e^4}} x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 35, normalized size = 1.25 \begin {gather*} e^{\left (\frac {{\left (x^{2} + x e^{3}\right )} e^{\left (4 \, e^{\left (e^{4}\right )}\right )}}{3 \, x e^{\left (4 \, e^{\left (e^{4}\right )}\right )} - x - e^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.35, size = 42, normalized size = 1.50 \begin {gather*} e^{\left (\frac {x^{2} e^{\left (4 \, e^{\left (e^{4}\right )}\right )} + x e^{\left (4 \, e^{\left (e^{4}\right )} + 3\right )}}{3 \, x e^{\left (4 \, e^{\left (e^{4}\right )}\right )} - x - e^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 2.70, size = 30, normalized size = 1.07
method | result | size |
risch | \({\mathrm e}^{-\frac {x \left ({\mathrm e}^{3}+x \right ) {\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}}{-3 x \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}+{\mathrm e}^{3}+x}}\) | \(30\) |
norman | \(\frac {{\mathrm e}^{3} {\mathrm e}^{\frac {\left (x \,{\mathrm e}^{3}+x^{2}\right ) {\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}}{3 x \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}-{\mathrm e}^{3}-x}}+\left (1-3 \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}\right ) x \,{\mathrm e}^{\frac {\left (x \,{\mathrm e}^{3}+x^{2}\right ) {\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}}{3 x \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}-{\mathrm e}^{3}-x}}}{-3 x \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{4}}}+{\mathrm e}^{3}+x}\) | \(103\) |
gosper | error in isolve/isolve: invalid subscript selector\ | N/A |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.05, size = 218, normalized size = 7.79 \begin {gather*} e^{\left (\frac {3 \, x e^{\left (8 \, e^{\left (e^{4}\right )}\right )}}{9 \, e^{\left (8 \, e^{\left (e^{4}\right )}\right )} - 6 \, e^{\left (4 \, e^{\left (e^{4}\right )}\right )} + 1} - \frac {x e^{\left (4 \, e^{\left (e^{4}\right )}\right )}}{9 \, e^{\left (8 \, e^{\left (e^{4}\right )}\right )} - 6 \, e^{\left (4 \, e^{\left (e^{4}\right )}\right )} + 1} + \frac {e^{\left (4 \, e^{\left (e^{4}\right )} + 6\right )}}{x {\left (27 \, e^{\left (12 \, e^{\left (e^{4}\right )}\right )} - 27 \, e^{\left (8 \, e^{\left (e^{4}\right )}\right )} + 9 \, e^{\left (4 \, e^{\left (e^{4}\right )}\right )} - 1\right )} - e^{3} - 9 \, e^{\left (8 \, e^{\left (e^{4}\right )} + 3\right )} + 6 \, e^{\left (4 \, e^{\left (e^{4}\right )} + 3\right )}} + \frac {e^{\left (4 \, e^{\left (e^{4}\right )} + 6\right )}}{x {\left (9 \, e^{\left (8 \, e^{\left (e^{4}\right )}\right )} - 6 \, e^{\left (4 \, e^{\left (e^{4}\right )}\right )} + 1\right )} + e^{3} - 3 \, e^{\left (4 \, e^{\left (e^{4}\right )} + 3\right )}} + \frac {e^{\left (4 \, e^{\left (e^{4}\right )} + 3\right )}}{9 \, e^{\left (8 \, e^{\left (e^{4}\right )}\right )} - 6 \, e^{\left (4 \, e^{\left (e^{4}\right )}\right )} + 1} + \frac {e^{\left (4 \, e^{\left (e^{4}\right )} + 3\right )}}{3 \, e^{\left (4 \, e^{\left (e^{4}\right )}\right )} - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 39, normalized size = 1.39 \begin {gather*} {\mathrm {e}}^{-\frac {{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^4}}\,x^2+{\mathrm {e}}^3\,{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^4}}\,x}{x+{\mathrm {e}}^3-3\,x\,{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^4}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 34, normalized size = 1.21 \begin {gather*} e^{\frac {\left (x^{2} + x e^{3}\right ) e^{4 e^{e^{4}}}}{- x + 3 x e^{4 e^{e^{4}}} - e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________