Optimal. Leaf size=28 \[ 1-\left (2+(5+x)^2+\log \left (\frac {e^x (3-x)}{3+x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.55, antiderivative size = 107, normalized size of antiderivative = 3.82, number of steps used = 32, number of rules used = 18, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.281, Rules used = {6725, 207, 260, 321, 266, 43, 302, 1810, 2548, 444, 2551, 459, 206, 2552, 12, 388, 5910, 5948} \begin {gather*} -x^4-20 x^3-153 x^2-2 x^2 \log \left (\frac {e^x (3-x)}{x+3}\right )-594 x-22 x \log \left (\frac {e^x (3-x)}{x+3}\right )-4 x \tanh ^{-1}\left (\frac {x}{3}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right )^2+108 \tanh ^{-1}\left (\frac {x}{3}\right )+4 \log \left (\frac {e^x (3-x)}{x+3}\right ) \tanh ^{-1}\left (\frac {x}{3}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 206
Rule 207
Rule 260
Rule 266
Rule 302
Rule 321
Rule 388
Rule 444
Rule 459
Rule 1810
Rule 2548
Rule 2551
Rule 2552
Rule 5910
Rule 5948
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5022}{-9+x^2}+\frac {2832 x}{-9+x^2}-\frac {48 x^2}{-9+x^2}-\frac {292 x^3}{-9+x^2}-\frac {62 x^4}{-9+x^2}-\frac {4 x^5}{-9+x^2}-\frac {2 \left (-93-18 x+11 x^2+2 x^3\right ) \log \left (-\frac {e^x (-3+x)}{3+x}\right )}{-9+x^2}\right ) \, dx\\ &=-\left (2 \int \frac {\left (-93-18 x+11 x^2+2 x^3\right ) \log \left (-\frac {e^x (-3+x)}{3+x}\right )}{-9+x^2} \, dx\right )-4 \int \frac {x^5}{-9+x^2} \, dx-48 \int \frac {x^2}{-9+x^2} \, dx-62 \int \frac {x^4}{-9+x^2} \, dx-292 \int \frac {x^3}{-9+x^2} \, dx+2832 \int \frac {x}{-9+x^2} \, dx+5022 \int \frac {1}{-9+x^2} \, dx\\ &=-48 x-1674 \tanh ^{-1}\left (\frac {x}{3}\right )+1416 \log \left (9-x^2\right )-2 \int \left (11 \log \left (-\frac {e^x (-3+x)}{3+x}\right )+2 x \log \left (-\frac {e^x (-3+x)}{3+x}\right )+\frac {6 \log \left (-\frac {e^x (-3+x)}{3+x}\right )}{-9+x^2}\right ) \, dx-2 \operatorname {Subst}\left (\int \frac {x^2}{-9+x} \, dx,x,x^2\right )-62 \int \left (9+x^2+\frac {81}{-9+x^2}\right ) \, dx-146 \operatorname {Subst}\left (\int \frac {x}{-9+x} \, dx,x,x^2\right )-432 \int \frac {1}{-9+x^2} \, dx\\ &=-606 x-\frac {62 x^3}{3}-1530 \tanh ^{-1}\left (\frac {x}{3}\right )+1416 \log \left (9-x^2\right )-2 \operatorname {Subst}\left (\int \left (9+\frac {81}{-9+x}+x\right ) \, dx,x,x^2\right )-4 \int x \log \left (-\frac {e^x (-3+x)}{3+x}\right ) \, dx-12 \int \frac {\log \left (-\frac {e^x (-3+x)}{3+x}\right )}{-9+x^2} \, dx-22 \int \log \left (-\frac {e^x (-3+x)}{3+x}\right ) \, dx-146 \operatorname {Subst}\left (\int \left (1+\frac {9}{-9+x}\right ) \, dx,x,x^2\right )-5022 \int \frac {1}{-9+x^2} \, dx\\ &=-606 x-164 x^2-\frac {62 x^3}{3}-x^4+144 \tanh ^{-1}\left (\frac {x}{3}\right )-22 x \log \left (\frac {e^x (3-x)}{3+x}\right )-2 x^2 \log \left (\frac {e^x (3-x)}{3+x}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right ) \log \left (\frac {e^x (3-x)}{3+x}\right )-60 \log \left (9-x^2\right )+2 \int \frac {x^2 \left (3-x^2\right )}{9-x^2} \, dx+12 \int \frac {\left (-3+x^2\right ) \tanh ^{-1}\left (\frac {x}{3}\right )}{3 \left (9-x^2\right )} \, dx+22 \int \frac {x \left (3-x^2\right )}{9-x^2} \, dx\\ &=-606 x-164 x^2-20 x^3-x^4+144 \tanh ^{-1}\left (\frac {x}{3}\right )-22 x \log \left (\frac {e^x (3-x)}{3+x}\right )-2 x^2 \log \left (\frac {e^x (3-x)}{3+x}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right ) \log \left (\frac {e^x (3-x)}{3+x}\right )-60 \log \left (9-x^2\right )+4 \int \frac {\left (-3+x^2\right ) \tanh ^{-1}\left (\frac {x}{3}\right )}{9-x^2} \, dx+11 \operatorname {Subst}\left (\int \frac {3-x}{9-x} \, dx,x,x^2\right )-12 \int \frac {x^2}{9-x^2} \, dx\\ &=-594 x-164 x^2-20 x^3-x^4+144 \tanh ^{-1}\left (\frac {x}{3}\right )-22 x \log \left (\frac {e^x (3-x)}{3+x}\right )-2 x^2 \log \left (\frac {e^x (3-x)}{3+x}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right ) \log \left (\frac {e^x (3-x)}{3+x}\right )-60 \log \left (9-x^2\right )+4 \int \left (-\tanh ^{-1}\left (\frac {x}{3}\right )-\frac {6 \tanh ^{-1}\left (\frac {x}{3}\right )}{-9+x^2}\right ) \, dx+11 \operatorname {Subst}\left (\int \left (1+\frac {6}{-9+x}\right ) \, dx,x,x^2\right )-108 \int \frac {1}{9-x^2} \, dx\\ &=-594 x-153 x^2-20 x^3-x^4+108 \tanh ^{-1}\left (\frac {x}{3}\right )-22 x \log \left (\frac {e^x (3-x)}{3+x}\right )-2 x^2 \log \left (\frac {e^x (3-x)}{3+x}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right ) \log \left (\frac {e^x (3-x)}{3+x}\right )+6 \log \left (9-x^2\right )-4 \int \tanh ^{-1}\left (\frac {x}{3}\right ) \, dx-24 \int \frac {\tanh ^{-1}\left (\frac {x}{3}\right )}{-9+x^2} \, dx\\ &=-594 x-153 x^2-20 x^3-x^4+108 \tanh ^{-1}\left (\frac {x}{3}\right )-4 x \tanh ^{-1}\left (\frac {x}{3}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right )^2-22 x \log \left (\frac {e^x (3-x)}{3+x}\right )-2 x^2 \log \left (\frac {e^x (3-x)}{3+x}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right ) \log \left (\frac {e^x (3-x)}{3+x}\right )+6 \log \left (9-x^2\right )+\frac {4}{3} \int \frac {x}{1-\frac {x^2}{9}} \, dx\\ &=-594 x-153 x^2-20 x^3-x^4+108 \tanh ^{-1}\left (\frac {x}{3}\right )-4 x \tanh ^{-1}\left (\frac {x}{3}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right )^2-22 x \log \left (\frac {e^x (3-x)}{3+x}\right )-2 x^2 \log \left (\frac {e^x (3-x)}{3+x}\right )+4 \tanh ^{-1}\left (\frac {x}{3}\right ) \log \left (\frac {e^x (3-x)}{3+x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 130, normalized size = 4.64 \begin {gather*} -594 x-153 x^2-20 x^3-x^4+84 \log (3-x)-\log ^2\left (\frac {-3+x}{3+x}\right )-4 \tanh ^{-1}\left (\frac {x}{3}\right ) \left (-36+x+\log \left (\frac {-3+x}{3+x}\right )-\log \left (-\frac {e^x (-3+x)}{3+x}\right )\right )-22 x \log \left (-\frac {e^x (-3+x)}{3+x}\right )-2 x^2 \log \left (-\frac {e^x (-3+x)}{3+x}\right )+48 \log (3+x)-66 \log \left (9-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 59, normalized size = 2.11 \begin {gather*} -x^{4} - 20 \, x^{3} - 154 \, x^{2} - 2 \, {\left (x^{2} + 10 \, x + 27\right )} \log \left (-\frac {{\left (x - 3\right )} e^{x}}{x + 3}\right ) - \log \left (-\frac {{\left (x - 3\right )} e^{x}}{x + 3}\right )^{2} - 540 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 66, normalized size = 2.36 \begin {gather*} -x^{4} - 22 \, x^{3} - 175 \, x^{2} - 2 \, {\left (x^{2} + 11 \, x\right )} \log \left (-\frac {x - 3}{x + 3}\right ) - \log \left (-\frac {x - 3}{x + 3}\right )^{2} - 594 \, x + 54 \, \log \left (x + 3\right ) - 54 \, \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.86, size = 172, normalized size = 6.14
method | result | size |
default | \(-x^{4}-20 x^{3}-153 x^{2}-594 x +60 \ln \left (3+x \right )-48 \ln \left (x -3\right )-2 \ln \left (\frac {\left (3-x \right ) {\mathrm e}^{x}}{3+x}\right ) x^{2}-2 \ln \left (x -3\right ) \ln \left (\frac {\left (3-x \right ) {\mathrm e}^{x}}{3+x}\right )+2 \ln \left (\frac {\left (3-x \right ) {\mathrm e}^{x}}{3+x}\right ) \ln \left (3+x \right )-22 \ln \left (\frac {\left (3-x \right ) {\mathrm e}^{x}}{3+x}\right ) x +2 \left (x -3\right ) \ln \left (x -3\right )+12-2 \ln \left (x -3\right ) \ln \left (\frac {x}{6}+\frac {1}{2}\right )+\ln \left (x -3\right )^{2}-2 \left (3+x \right ) \ln \left (3+x \right )-2 \left (\ln \left (3+x \right )-\ln \left (\frac {x}{6}+\frac {1}{2}\right )\right ) \ln \left (\frac {1}{2}-\frac {x}{6}\right )+\ln \left (3+x \right )^{2}\) | \(172\) |
risch | \(-594 x -54 \ln \left (x -3\right )+20 x \ln \left (3+x \right )+54 \ln \left (3+x \right )-x^{4}-20 x^{3}-153 x^{2}-20 \ln \left (x -3\right ) x -2 i \pi \,x^{2}-2 i \ln \left (x -3\right ) \pi +2 i \ln \left (3+x \right ) \pi -i \ln \left (x -3\right ) \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}-i \ln \left (x -3\right ) \pi \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}+2 \ln \left (3+x \right ) x^{2}-\ln \left (x -3\right )^{2}-\ln \left (3+x \right )^{2}-22 i x \pi +i \ln \left (3+x \right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+i \ln \left (3+x \right ) \pi \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}-11 i \pi x \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}-11 i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-11 i \pi x \,\mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}-11 i \pi x \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}+2 i \ln \left (x -3\right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}+22 i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}-2 i \ln \left (3+x \right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}+2 \ln \left (3+x \right ) \ln \left (x -3\right )-2 x^{2} \ln \left (x -3\right )+\left (-2 x^{2}-22 x +2 \ln \left (3+x \right )-2 \ln \left (x -3\right )\right ) \ln \left ({\mathrm e}^{x}\right )+11 i \pi x \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{3}-i \ln \left (3+x \right ) \pi \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{3}+i \ln \left (x -3\right ) \pi \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{3}+i \ln \left (x -3\right ) \pi \,\mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )+i \ln \left (x -3\right ) \pi \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+11 i \pi x \,\mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )+11 i \pi x \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{3}-i \ln \left (x -3\right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{3}+i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{3}+i \ln \left (3+x \right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{3}-i \pi \,x^{2} \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}-i \ln \left (x -3\right ) \pi \,\mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}-i \ln \left (x -3\right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+i \ln \left (3+x \right ) \pi \,\mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}+i \ln \left (3+x \right ) \pi \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )^{2}-i \ln \left (3+x \right ) \pi \,\mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )-i \ln \left (3+x \right ) \pi \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right )+i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-11 i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{3}+2 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x} \left (x -3\right )}{3+x}\right )^{2}\) | \(1195\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 160, normalized size = 5.71 \begin {gather*} -x^{4} - 22 \, x^{3} - 175 \, x^{2} + {\left (2 \, x^{2} + 22 \, x - 51\right )} \log \left (x + 3\right ) + 31 \, {\left (x + \log \left (x - 3\right ) + 3\right )} \log \left (x + 3\right ) - 32 \, \log \left (x + 3\right )^{2} - 31 \, {\left (x - 3\right )} \log \left (x - 3\right ) - \frac {31}{2} \, \log \left (x - 3\right )^{2} - {\left (2 \, x^{2} + 22 \, x - 33 \, \log \left (x + 3\right ) + 15\right )} \log \left (-x + 3\right ) - \frac {33}{2} \, \log \left (-x + 3\right )^{2} - 31 \, {\left (\log \left (x + 3\right ) - \log \left (x - 3\right )\right )} \log \left (-\frac {x e^{x}}{x + 3} + \frac {3 \, e^{x}}{x + 3}\right ) - 594 \, x - 60 \, \log \left (x^{2} - 9\right ) + 72 \, \log \left (x + 3\right ) - 72 \, \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 72, normalized size = 2.57 \begin {gather*} -594\,x-2\,x^2\,\ln \left (-\frac {x-3}{x+3}\right )-{\ln \left (-\frac {x-3}{x+3}\right )}^2-22\,x\,\ln \left (-\frac {x-3}{x+3}\right )-175\,x^2-22\,x^3-x^4-\mathrm {atan}\left (\frac {x\,1{}\mathrm {i}}{3}\right )\,108{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 65, normalized size = 2.32 \begin {gather*} - x^{4} - 20 x^{3} - 154 x^{2} - 594 x + \left (- 2 x^{2} - 20 x\right ) \log {\left (\frac {\left (3 - x\right ) e^{x}}{x + 3} \right )} - \log {\left (\frac {\left (3 - x\right ) e^{x}}{x + 3} \right )}^{2} - 54 \log {\left (x - 3 \right )} + 54 \log {\left (x + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________