Optimal. Leaf size=20 \[ 2+\frac {1}{56+\sqrt [4]{x \left (4+\log \left (\frac {3}{x}\right )\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 3, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6688, 12, 6686} \begin {gather*} \frac {1}{\sqrt [4]{x \left (\log \left (\frac {3}{x}\right )+4\right )}+56} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3-\log \left (\frac {3}{x}\right )}{4 \left (4 x+x \log \left (\frac {3}{x}\right )\right )^{3/4} \left (56+\sqrt [4]{x \left (4+\log \left (\frac {3}{x}\right )\right )}\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {-3-\log \left (\frac {3}{x}\right )}{\left (4 x+x \log \left (\frac {3}{x}\right )\right )^{3/4} \left (56+\sqrt [4]{x \left (4+\log \left (\frac {3}{x}\right )\right )}\right )^2} \, dx\\ &=\frac {1}{56+\sqrt [4]{x \left (4+\log \left (\frac {3}{x}\right )\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.57, size = 18, normalized size = 0.90 \begin {gather*} \frac {1}{56+\sqrt [4]{x \left (4+\log \left (\frac {3}{x}\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 64, normalized size = 3.20 \begin {gather*} \frac {{\left (x \log \left (\frac {3}{x}\right ) + 4 \, x\right )}^{\frac {3}{4}} - 56 \, \sqrt {x \log \left (\frac {3}{x}\right ) + 4 \, x} + 3136 \, {\left (x \log \left (\frac {3}{x}\right ) + 4 \, x\right )}^{\frac {1}{4}} - 175616}{x \log \left (\frac {3}{x}\right ) + 4 \, x - 9834496} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 0.90 \begin {gather*} \frac {1}{{\left (x \log \left (\frac {3}{x}\right ) + 4 \, x\right )}^{\frac {1}{4}} + 56} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (-\ln \left (\frac {3}{x}\right )-3\right ) \left (x \ln \left (\frac {3}{x}\right )+4 x \right )^{\frac {1}{4}}}{\left (4 x \ln \left (\frac {3}{x}\right )+16 x \right ) \sqrt {x \ln \left (\frac {3}{x}\right )+4 x}+\left (448 x \ln \left (\frac {3}{x}\right )+1792 x \right ) \left (x \ln \left (\frac {3}{x}\right )+4 x \right )^{\frac {1}{4}}+12544 x \ln \left (\frac {3}{x}\right )+50176 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, \int \frac {{\left (x \log \left (\frac {3}{x}\right ) + 4 \, x\right )}^{\frac {1}{4}} {\left (\log \left (\frac {3}{x}\right ) + 3\right )}}{3136 \, x \log \left (\frac {3}{x}\right ) + {\left (x \log \left (\frac {3}{x}\right ) + 4 \, x\right )}^{\frac {3}{2}} + 112 \, {\left (x \log \left (\frac {3}{x}\right ) + 4 \, x\right )}^{\frac {5}{4}} + 12544 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.36, size = 18, normalized size = 0.90 \begin {gather*} \frac {1}{{\left (4\,x+x\,\ln \left (\frac {3}{x}\right )\right )}^{1/4}+56} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________