Optimal. Leaf size=20 \[ x+\frac {5}{(-x+\log (x)) \log \left (-x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x+(-5+5 x) \log \left (-x^2\right )+x^3 \log ^2\left (-x^2\right )+x \log ^2(x) \log ^2\left (-x^2\right )+\log (x) \left (-10-2 x^2 \log ^2\left (-x^2\right )\right )}{x^3 \log ^2\left (-x^2\right )-2 x^2 \log (x) \log ^2\left (-x^2\right )+x \log ^2(x) \log ^2\left (-x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+(-5+5 x) \log \left (-x^2\right )+x^3 \log ^2\left (-x^2\right )+x \log ^2(x) \log ^2\left (-x^2\right )+\log (x) \left (-10-2 x^2 \log ^2\left (-x^2\right )\right )}{x (x-\log (x))^2 \log ^2\left (-x^2\right )} \, dx\\ &=\int \left (1+\frac {10}{x (x-\log (x)) \log ^2\left (-x^2\right )}+\frac {5 (-1+x)}{x (x-\log (x))^2 \log \left (-x^2\right )}\right ) \, dx\\ &=x+5 \int \frac {-1+x}{x (x-\log (x))^2 \log \left (-x^2\right )} \, dx+10 \int \frac {1}{x (x-\log (x)) \log ^2\left (-x^2\right )} \, dx\\ &=x+5 \int \left (\frac {1}{(x-\log (x))^2 \log \left (-x^2\right )}-\frac {1}{x (x-\log (x))^2 \log \left (-x^2\right )}\right ) \, dx+10 \int \frac {1}{x (x-\log (x)) \log ^2\left (-x^2\right )} \, dx\\ &=x+5 \int \frac {1}{(x-\log (x))^2 \log \left (-x^2\right )} \, dx-5 \int \frac {1}{x (x-\log (x))^2 \log \left (-x^2\right )} \, dx+10 \int \frac {1}{x (x-\log (x)) \log ^2\left (-x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 20, normalized size = 1.00 \begin {gather*} x-\frac {5}{(x-\log (x)) \log \left (-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.69, size = 55, normalized size = 2.75 \begin {gather*} \frac {x \log \left (-x^{2}\right )^{2} + {\left (i \, \pi x - 2 \, x^{2}\right )} \log \left (-x^{2}\right ) + 10}{{\left (i \, \pi - 2 \, x\right )} \log \left (-x^{2}\right ) + \log \left (-x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.46, size = 27, normalized size = 1.35 \begin {gather*} x + \frac {5}{-i \, \pi x + i \, \pi \log \relax (x) - 2 \, x \log \relax (x) + 2 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 157, normalized size = 7.85
method | result | size |
risch | \(x -\frac {10 i}{-\pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+2 x \pi \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{2}-\ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-4 i \ln \relax (x )^{2}+4 i x \ln \relax (x )-2 \pi x +2 \pi \ln \relax (x )}\) | \(157\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 52, normalized size = 2.60 \begin {gather*} \frac {-i \, \pi x^{2} + 2 \, x \log \relax (x)^{2} + {\left (i \, \pi x - 2 \, x^{2}\right )} \log \relax (x) + 5}{-i \, \pi x + {\left (i \, \pi - 2 \, x\right )} \log \relax (x) + 2 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {10\,x+\ln \left (-x^2\right )\,\left (5\,x-5\right )+x^3\,{\ln \left (-x^2\right )}^2-\ln \relax (x)\,\left (2\,x^2\,{\ln \left (-x^2\right )}^2+10\right )+x\,{\ln \left (-x^2\right )}^2\,{\ln \relax (x)}^2}{x^3\,{\ln \left (-x^2\right )}^2-2\,x^2\,{\ln \left (-x^2\right )}^2\,\ln \relax (x)+x\,{\ln \left (-x^2\right )}^2\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.67, size = 24, normalized size = 1.20 \begin {gather*} x + \frac {5}{- i \pi x + \left (- 2 x + i \pi \right ) \log {\relax (x )} + 2 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________