Optimal. Leaf size=23 \[ \frac {1}{2} x \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {6742, 2448, 263, 31} \begin {gather*} \frac {1}{2} x \log \left (\frac {5}{x \log \left (\frac {5}{4+e}\right )}+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 263
Rule 2448
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5}{2 \left (5+4 x \log \left (\frac {5}{4+e}\right )\right )}+\frac {1}{2} \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right )\right ) \, dx\\ &=-\frac {5 \log \left (5+4 x \log \left (\frac {5}{4+e}\right )\right )}{8 \log \left (\frac {5}{4+e}\right )}+\frac {1}{2} \int \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right ) \, dx\\ &=\frac {1}{2} x \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right )-\frac {5 \log \left (5+4 x \log \left (\frac {5}{4+e}\right )\right )}{8 \log \left (\frac {5}{4+e}\right )}+\frac {5 \int \frac {1}{x \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right )} \, dx}{2 \log \left (\frac {5}{4+e}\right )}\\ &=\frac {1}{2} x \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right )-\frac {5 \log \left (5+4 x \log \left (\frac {5}{4+e}\right )\right )}{8 \log \left (\frac {5}{4+e}\right )}+\frac {5 \int \frac {1}{4 x+\frac {5}{\log \left (\frac {5}{4+e}\right )}} \, dx}{2 \log \left (\frac {5}{4+e}\right )}\\ &=\frac {1}{2} x \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 67, normalized size = 2.91 \begin {gather*} \frac {5 \log (x)+\left (5+4 x \log \left (\frac {5}{4+e}\right )\right ) \log \left (4+\frac {5}{x \log \left (\frac {5}{4+e}\right )}\right )-5 \log \left (5+4 x \log \left (\frac {5}{4+e}\right )\right )}{8 \log \left (\frac {5}{4+e}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 33, normalized size = 1.43 \begin {gather*} \frac {1}{2} \, x \log \left (\frac {4 \, x \log \left (\frac {5}{e + 4}\right ) + 5}{x \log \left (\frac {5}{e + 4}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 176, normalized size = 7.65 \begin {gather*} -\frac {5 \, \log \left (\frac {5}{e + 4}\right ) \log \left (\frac {4 \, x \log \left (\frac {5}{e + 4}\right ) + 5}{x \log \left (\frac {5}{e + 4}\right )}\right )}{2 \, {\left (4 \, \log \relax (5)^{2} - 8 \, \log \relax (5) \log \left (e + 4\right ) + 4 \, \log \left (e + 4\right )^{2} - \frac {{\left (4 \, x \log \left (\frac {5}{e + 4}\right ) + 5\right )} \log \relax (5)^{2}}{x \log \left (\frac {5}{e + 4}\right )} + \frac {2 \, {\left (4 \, x \log \left (\frac {5}{e + 4}\right ) + 5\right )} \log \relax (5) \log \left (e + 4\right )}{x \log \left (\frac {5}{e + 4}\right )} - \frac {{\left (4 \, x \log \left (\frac {5}{e + 4}\right ) + 5\right )} \log \left (e + 4\right )^{2}}{x \log \left (\frac {5}{e + 4}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 34, normalized size = 1.48
method | result | size |
norman | \(\frac {x \ln \left (\frac {4 x \ln \left (\frac {5}{{\mathrm e}+4}\right )+5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}\right )}{2}\) | \(34\) |
risch | \(\frac {x \ln \left (\frac {4 x \left (\ln \relax (5)-\ln \left ({\mathrm e}+4\right )\right )+5}{x \left (\ln \relax (5)-\ln \left ({\mathrm e}+4\right )\right )}\right )}{2}\) | \(36\) |
derivativedivides | \(-\frac {-\frac {\ln \left (\frac {5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}+4\right ) \left (\frac {5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}+4\right ) \ln \left (\frac {5}{{\mathrm e}+4}\right ) x}{4}+\frac {5 \ln \left (\frac {5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}+4\right )}{4}}{2 \ln \left (\frac {5}{{\mathrm e}+4}\right )}\) | \(85\) |
default | \(-\frac {-\frac {\ln \left (\frac {5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}+4\right ) \left (\frac {5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}+4\right ) \ln \left (\frac {5}{{\mathrm e}+4}\right ) x}{4}+\frac {5 \ln \left (\frac {5}{x \ln \left (\frac {5}{{\mathrm e}+4}\right )}+4\right )}{4}}{2 \ln \left (\frac {5}{{\mathrm e}+4}\right )}\) | \(85\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 128, normalized size = 5.57 \begin {gather*} -\frac {4 \, x {\left (\log \relax (5) - \log \left (e + 4\right )\right )} \log \relax (x) + 4 \, {\left (\log \relax (5) \log \left (-\log \relax (5) + \log \left (e + 4\right )\right ) - \log \left (e + 4\right ) \log \left (-\log \relax (5) + \log \left (e + 4\right )\right )\right )} x - {\left (4 \, x {\left (\log \relax (5) - \log \left (e + 4\right )\right )} + 5\right )} \log \left (-4 \, x {\left (\log \relax (5) - \log \left (e + 4\right )\right )} - 5\right )}{8 \, {\left (\log \relax (5) - \log \left (e + 4\right )\right )}} - \frac {5 \, \log \left (4 \, x \log \left (\frac {5}{e + 4}\right ) + 5\right )}{8 \, \log \left (\frac {5}{e + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.06, size = 38, normalized size = 1.65 \begin {gather*} -\frac {x\,\left (\ln \left (-\ln \left (\frac {5}{\mathrm {e}+4}\right )\right )-\ln \left (-\frac {4\,x\,\ln \left (\frac {5}{\mathrm {e}+4}\right )+5}{x}\right )\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 27, normalized size = 1.17 \begin {gather*} \frac {x \log {\left (\frac {4 x \log {\left (\frac {5}{e + 4} \right )} + 5}{x \log {\left (\frac {5}{e + 4} \right )}} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________