Optimal. Leaf size=24 \[ 5+\frac {2}{x^2 \left (2+x+\frac {\log \left (\frac {16 x^2}{9}\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 3, number of rules used = 3, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6688, 12, 6687} \begin {gather*} \frac {2}{x \left (\log \left (\frac {16 x^2}{9}\right )+x (x+2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-2-4 x-3 x^2-\log \left (\frac {16 x^2}{9}\right )\right )}{x^2 \left (x (2+x)+\log \left (\frac {16 x^2}{9}\right )\right )^2} \, dx\\ &=2 \int \frac {-2-4 x-3 x^2-\log \left (\frac {16 x^2}{9}\right )}{x^2 \left (x (2+x)+\log \left (\frac {16 x^2}{9}\right )\right )^2} \, dx\\ &=\frac {2}{x \left (x (2+x)+\log \left (\frac {16 x^2}{9}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 22, normalized size = 0.92 \begin {gather*} \frac {2}{x \left (2 x+x^2+\log \left (\frac {16 x^2}{9}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 21, normalized size = 0.88 \begin {gather*} \frac {2}{x^{3} + 2 \, x^{2} + x \log \left (\frac {16}{9} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 21, normalized size = 0.88 \begin {gather*} \frac {2}{x^{3} + 2 \, x^{2} + x \log \left (\frac {16}{9} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.88
method | result | size |
norman | \(\frac {2}{x \left (x^{2}+\ln \left (\frac {16 x^{2}}{9}\right )+2 x \right )}\) | \(21\) |
risch | \(\frac {2}{x \left (x^{2}+\ln \left (\frac {16 x^{2}}{9}\right )+2 x \right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 28, normalized size = 1.17 \begin {gather*} \frac {2}{x^{3} + 2 \, x^{2} - 2 \, x {\left (\log \relax (3) - 2 \, \log \relax (2)\right )} + 2 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {8\,x+2\,\ln \left (\frac {16\,x^2}{9}\right )+6\,x^2+4}{x^2\,{\ln \left (\frac {16\,x^2}{9}\right )}^2+\ln \left (\frac {16\,x^2}{9}\right )\,\left (2\,x^4+4\,x^3\right )+4\,x^4+4\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.79 \begin {gather*} \frac {2}{x^{3} + 2 x^{2} + x \log {\left (\frac {16 x^{2}}{9} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________