Optimal. Leaf size=19 \[ \frac {x^3}{\log ^2\left (e^{4-\frac {10}{x}+2 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20 x-4 x^3+3 x^2 \log \left (e^{2 x+\frac {2 (-5+2 x)}{x}}\right )}{\log ^3\left (e^{2 x+\frac {2 (-5+2 x)}{x}}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20 x-4 x^3+3 x^2 \log \left (e^{2 x+\frac {2 (-5+2 x)}{x}}\right )}{\log ^3\left (e^{\frac {2 \left (-5+2 x+x^2\right )}{x}}\right )} \, dx\\ &=\int \left (-\frac {4 x \left (5+x^2\right )}{\log ^3\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )}+\frac {3 x^2}{\log ^2\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )}\right ) \, dx\\ &=3 \int \frac {x^2}{\log ^2\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )} \, dx-4 \int \frac {x \left (5+x^2\right )}{\log ^3\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )} \, dx\\ &=3 \int \frac {x^2}{\log ^2\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )} \, dx-4 \int \left (\frac {5 x}{\log ^3\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )}+\frac {x^3}{\log ^3\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )}\right ) \, dx\\ &=3 \int \frac {x^2}{\log ^2\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )} \, dx-4 \int \frac {x^3}{\log ^3\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )} \, dx-20 \int \frac {x}{\log ^3\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.32, size = 46, normalized size = 2.42 \begin {gather*} \frac {1}{4} \left (\frac {10}{x}-2 x+\frac {4 x^3}{\log ^2\left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )}+\log \left (e^{2 \left (2-\frac {5}{x}+x\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 45, normalized size = 2.37 \begin {gather*} \frac {x^{5} + 4 \, x^{4} + 16 \, x^{3} - 24 \, x^{2} - 80 \, x + 100}{4 \, {\left (x^{4} + 4 \, x^{3} - 6 \, x^{2} - 20 \, x + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 31, normalized size = 1.63 \begin {gather*} \frac {1}{4} \, x + \frac {22 \, x^{3} - 4 \, x^{2} - 105 \, x + 100}{4 \, {\left (x^{2} + 2 \, x - 5\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.23, size = 298, normalized size = 15.68
method | result | size |
risch | \(-\frac {4 x^{3}}{\left (\pi \mathrm {csgn}\left (i {\mathrm e}^{\frac {2 x -5}{x}}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{\frac {4 x -10}{x}}\right )-2 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {2 x -5}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {4 x -10}{x}}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{\frac {4 x -10}{x}}\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {4 x -10}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {2 x^{2}+4 x -10}{x}}\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {4 x -10}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {2 x^{2}+4 x -10}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+\pi \mathrm {csgn}\left (i {\mathrm e}^{\frac {2 x^{2}+4 x -10}{x}}\right )^{3}-\pi \mathrm {csgn}\left (i {\mathrm e}^{\frac {2 x^{2}+4 x -10}{x}}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+\pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-2 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}+4 i \ln \left ({\mathrm e}^{x}\right )+4 i \ln \left ({\mathrm e}^{\frac {2 x -5}{x}}\right )\right )^{2}}\) | \(298\) |
default | \(\text {Expression too large to display}\) | \(9401\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 41, normalized size = 2.16 \begin {gather*} \frac {1}{4} \, x + \frac {22 \, x^{3} - 4 \, x^{2} - 105 \, x + 100}{4 \, {\left (x^{4} + 4 \, x^{3} - 6 \, x^{2} - 20 \, x + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 29, normalized size = 1.53 \begin {gather*} \frac {x}{4}-\frac {-\frac {11\,x^3}{2}+x^2+\frac {105\,x}{4}-25}{{\left (x^2+2\,x-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 37, normalized size = 1.95 \begin {gather*} \frac {x}{4} + \frac {22 x^{3} - 4 x^{2} - 105 x + 100}{4 x^{4} + 16 x^{3} - 24 x^{2} - 80 x + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________