Optimal. Leaf size=19 \[ e^{25+e^2-3 x-x^2} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 33, normalized size of antiderivative = 1.74, number of steps used = 1, number of rules used = 1, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {2288} \begin {gather*} \frac {e^{-x^2-3 x+e^2+25} x \left (2 x^2+3 x\right )}{2 x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{25+e^2-3 x-x^2} x \left (3 x+2 x^2\right )}{3+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.00 \begin {gather*} e^{25+e^2-3 x-x^2} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (-x^{2} - 3 \, x + e^{2} + 2 \, \log \relax (x) + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (-x^{2} - 3 \, x + e^{2} + 2 \, \log \relax (x) + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
gosper | \({\mathrm e}^{2 \ln \relax (x )+{\mathrm e}^{2}-x^{2}-3 x +25}\) | \(18\) |
default | \(x^{2} {\mathrm e}^{25+{\mathrm e}^{2}-x^{2}-3 x}\) | \(18\) |
norman | \({\mathrm e}^{2 \ln \relax (x )+{\mathrm e}^{2}-x^{2}-3 x +25}\) | \(18\) |
risch | \(x^{2} {\mathrm e}^{25+{\mathrm e}^{2}-x^{2}-3 x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.43, size = 231, normalized size = 12.16 \begin {gather*} \frac {1}{8} i \, {\left (\frac {36 i \, {\left (2 \, x + 3\right )}^{3} \Gamma \left (\frac {3}{2}, \frac {1}{4} \, {\left (2 \, x + 3\right )}^{2}\right )}{{\left ({\left (2 \, x + 3\right )}^{2}\right )}^{\frac {3}{2}}} - \frac {27 i \, \sqrt {\pi } {\left (2 \, x + 3\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {{\left (2 \, x + 3\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (2 \, x + 3\right )}^{2}}} - 54 i \, e^{\left (-\frac {1}{4} \, {\left (2 \, x + 3\right )}^{2}\right )} - 8 i \, \Gamma \left (2, \frac {1}{4} \, {\left (2 \, x + 3\right )}^{2}\right )\right )} e^{\left (e^{2} + \frac {109}{4}\right )} + \frac {3}{8} i \, {\left (-\frac {4 i \, {\left (2 \, x + 3\right )}^{3} \Gamma \left (\frac {3}{2}, \frac {1}{4} \, {\left (2 \, x + 3\right )}^{2}\right )}{{\left ({\left (2 \, x + 3\right )}^{2}\right )}^{\frac {3}{2}}} + \frac {9 i \, \sqrt {\pi } {\left (2 \, x + 3\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {{\left (2 \, x + 3\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (2 \, x + 3\right )}^{2}}} + 12 i \, e^{\left (-\frac {1}{4} \, {\left (2 \, x + 3\right )}^{2}\right )}\right )} e^{\left (e^{2} + \frac {109}{4}\right )} - \frac {1}{2} i \, {\left (-\frac {3 i \, \sqrt {\pi } {\left (2 \, x + 3\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {{\left (2 \, x + 3\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (2 \, x + 3\right )}^{2}}} - 2 i \, e^{\left (-\frac {1}{4} \, {\left (2 \, x + 3\right )}^{2}\right )}\right )} e^{\left (e^{2} + \frac {109}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.26, size = 19, normalized size = 1.00 \begin {gather*} x^2\,{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{25}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 15, normalized size = 0.79 \begin {gather*} x^{2} e^{- x^{2} - 3 x + e^{2} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________