Optimal. Leaf size=20 \[ -2+e^{1+x-\frac {4}{3} \log ^2\left (\log \left ((1+x)^4\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.62, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 3, integrand size = 113, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6688, 12, 6706} \begin {gather*} e^{x-\frac {4}{3} \log ^2\left (\log \left ((x+1)^4\right )\right )+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{1+x-\frac {4}{3} \log ^2\left (\log \left ((1+x)^4\right )\right )} \left (3 (1+x) \log \left ((1+x)^4\right )-32 \log \left (\log \left ((1+x)^4\right )\right )\right )}{3 (1+x) \log \left ((1+x)^4\right )} \, dx\\ &=\frac {1}{3} \int \frac {e^{1+x-\frac {4}{3} \log ^2\left (\log \left ((1+x)^4\right )\right )} \left (3 (1+x) \log \left ((1+x)^4\right )-32 \log \left (\log \left ((1+x)^4\right )\right )\right )}{(1+x) \log \left ((1+x)^4\right )} \, dx\\ &=e^{1+x-\frac {4}{3} \log ^2\left (\log \left ((1+x)^4\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 18, normalized size = 0.90 \begin {gather*} e^{1+x-\frac {4}{3} \log ^2\left (\log \left ((1+x)^4\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 28, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {4}{3} \, \log \left (\log \left (x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1\right )\right )^{2} + x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.30, size = 28, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {4}{3} \, \log \left (\log \left (x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x + 1\right )\right )^{2} + x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (-32 \,{\mathrm e} \ln \left (\ln \left (x^{4}+4 x^{3}+6 x^{2}+4 x +1\right )\right )+\left (3 x +3\right ) {\mathrm e} \ln \left (x^{4}+4 x^{3}+6 x^{2}+4 x +1\right )\right ) {\mathrm e}^{-\frac {4 \ln \left (\ln \left (x^{4}+4 x^{3}+6 x^{2}+4 x +1\right )\right )^{2}}{3}+x}}{\left (3 x +3\right ) \ln \left (x^{4}+4 x^{3}+6 x^{2}+4 x +1\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.21, size = 28, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {16}{3} \, \log \relax (2)^{2} - \frac {16}{3} \, \log \relax (2) \log \left (\log \left (x + 1\right )\right ) - \frac {4}{3} \, \log \left (\log \left (x + 1\right )\right )^{2} + x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.87, size = 30, normalized size = 1.50 \begin {gather*} \mathrm {e}\,{\mathrm {e}}^{-\frac {4\,{\ln \left (\ln \left (x^4+4\,x^3+6\,x^2+4\,x+1\right )\right )}^2}{3}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 32, normalized size = 1.60 \begin {gather*} e e^{x - \frac {4 \log {\left (\log {\left (x^{4} + 4 x^{3} + 6 x^{2} + 4 x + 1 \right )} \right )}^{2}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________