Optimal. Leaf size=31 \[ e^{\frac {\log ^2(x)}{x \left (4-x+2 x \left (-\frac {3 e^{4+x}}{4}+x\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 46.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {2 \log ^2(x)}{-8 x+2 x^2+3 e^{4+x} x^2-4 x^3}\right ) \left (\left (32-8 x-12 e^{4+x} x+16 x^2\right ) \log (x)+\left (-16+8 x-24 x^2+e^{4+x} \left (12 x+6 x^2\right )\right ) \log ^2(x)\right )}{64 x^2-32 x^3+68 x^4+9 e^{8+2 x} x^4-16 x^5+16 x^6+e^{4+x} \left (-48 x^3+12 x^4-24 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log (x) \left (16-2 \left (2+3 e^{4+x}\right ) x+8 x^2+\left (-8+\left (4+6 e^{4+x}\right ) x+3 \left (-4+e^{4+x}\right ) x^2\right ) \log (x)\right )}{x^2 \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )^2} \, dx\\ &=2 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log (x) \left (16-2 \left (2+3 e^{4+x}\right ) x+8 x^2+\left (-8+\left (4+6 e^{4+x}\right ) x+3 \left (-4+e^{4+x}\right ) x^2\right ) \log (x)\right )}{x^2 \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )^2} \, dx\\ &=2 \int \left (\frac {2 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \left (4+4 x-3 x^2+2 x^3\right ) \log ^2(x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )^2}-\frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log (x) (-2+2 \log (x)+x \log (x))}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log (x) (-2+2 \log (x)+x \log (x))}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )} \, dx\right )+4 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \left (4+4 x-3 x^2+2 x^3\right ) \log ^2(x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )^2} \, dx\\ &=-\left (2 \int \left (-\frac {2 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log (x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )}+\frac {2 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )}+\frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x \left (8-2 x-3 e^{4+x} x+4 x^2\right )}\right ) \, dx\right )+4 \int \left (-\frac {3 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{\left (8-2 x-3 e^{4+x} x+4 x^2\right )^2}+\frac {4 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )^2}+\frac {4 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x \left (8-2 x-3 e^{4+x} x+4 x^2\right )^2}+\frac {2 \exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) x \log ^2(x)}{\left (8-2 x-3 e^{4+x} x+4 x^2\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x \left (8-2 x-3 e^{4+x} x+4 x^2\right )} \, dx\right )+4 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log (x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )} \, dx-4 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )} \, dx+8 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) x \log ^2(x)}{\left (8-2 x-3 e^{4+x} x+4 x^2\right )^2} \, dx-12 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{\left (8-2 x-3 e^{4+x} x+4 x^2\right )^2} \, dx+16 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x^2 \left (8-2 x-3 e^{4+x} x+4 x^2\right )^2} \, dx+16 \int \frac {\exp \left (\frac {2 \log ^2(x)}{x \left (8-\left (2+3 e^{4+x}\right ) x+4 x^2\right )}\right ) \log ^2(x)}{x \left (8-2 x-3 e^{4+x} x+4 x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 31, normalized size = 1.00 \begin {gather*} e^{\frac {2 \log ^2(x)}{x \left (8-2 x-3 e^{4+x} x+4 x^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 32, normalized size = 1.03 \begin {gather*} e^{\left (\frac {2 \, \log \relax (x)^{2}}{4 \, x^{3} - 3 \, x^{2} e^{\left (x + 4\right )} - 2 \, x^{2} + 8 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 0.97
method | result | size |
risch | \({\mathrm e}^{\frac {2 \ln \relax (x )^{2}}{x \left (-3 x \,{\mathrm e}^{4+x}+4 x^{2}-2 x +8\right )}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 91, normalized size = 2.94 \begin {gather*} e^{\left (-\frac {x \log \relax (x)^{2}}{4 \, x^{2} - 3 \, x e^{\left (x + 4\right )} - 2 \, x + 8} + \frac {3 \, e^{\left (x + 4\right )} \log \relax (x)^{2}}{4 \, {\left (4 \, x^{2} - 3 \, x e^{\left (x + 4\right )} - 2 \, x + 8\right )}} + \frac {\log \relax (x)^{2}}{2 \, {\left (4 \, x^{2} - 3 \, x e^{\left (x + 4\right )} - 2 \, x + 8\right )}} + \frac {\log \relax (x)^{2}}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.68, size = 32, normalized size = 1.03 \begin {gather*} {\mathrm {e}}^{\frac {2\,{\ln \relax (x)}^2}{8\,x-2\,x^2+4\,x^3-3\,x^2\,{\mathrm {e}}^4\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.98, size = 32, normalized size = 1.03 \begin {gather*} e^{- \frac {2 \log {\relax (x )}^{2}}{- 4 x^{3} + 3 x^{2} e^{x + 4} + 2 x^{2} - 8 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________