Optimal. Leaf size=21 \[ \log \left (\log \left (\frac {x+\left (e^x+x\right )^2}{e^{e^{10}}+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+2 e^x x^2+e^{2 x} (-1+2 x)+e^{e^{10}} \left (1+2 e^{2 x}+2 x+e^x (2+2 x)\right )}{\left (e^{2 x} x+x^2+2 e^x x^2+x^3+e^{e^{10}} \left (e^{2 x}+x+2 e^x x+x^2\right )\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2+2 e^x x^2+e^{2 x} (-1+2 x)+e^{e^{10}} \left (1+2 e^{2 x}+2 x+e^x (2+2 x)\right )}{\left (e^{e^{10}}+x\right ) \left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx\\ &=\int \left (\frac {-1+2 e^{e^{10}}+2 x}{\left (e^{e^{10}}+x\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}-\frac {-1-2 e^x+2 e^x x+2 x^2}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}\right ) \, dx\\ &=\int \frac {-1+2 e^{e^{10}}+2 x}{\left (e^{e^{10}}+x\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx-\int \frac {-1-2 e^x+2 e^x x+2 x^2}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx\\ &=\int \left (\frac {2}{\log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}-\frac {1}{\left (e^{e^{10}}+x\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}\right ) \, dx-\int \left (-\frac {1}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}-\frac {2 e^x}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}+\frac {2 e^x x}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}+\frac {2 x^2}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )}\right ) \, dx\\ &=2 \int \frac {1}{\log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx+2 \int \frac {e^x}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx-2 \int \frac {e^x x}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx-2 \int \frac {x^2}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx-\int \frac {1}{\left (e^{e^{10}}+x\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx+\int \frac {1}{\left (e^{2 x}+x+2 e^x x+x^2\right ) \log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 1.33 \begin {gather*} \log \left (\log \left (\frac {e^{2 x}+x+2 e^x x+x^2}{e^{e^{10}}+x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 24, normalized size = 1.14 \begin {gather*} \log \left (\log \left (\frac {x^{2} + 2 \, x e^{x} + x + e^{\left (2 \, x\right )}}{x + e^{\left (e^{10}\right )}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 24, normalized size = 1.14 \begin {gather*} \log \left (\log \left (\frac {x^{2} + 2 \, x e^{x} + x + e^{\left (2 \, x\right )}}{x + e^{\left (e^{10}\right )}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.22, size = 219, normalized size = 10.43
method | result | size |
risch | \(\ln \left (\ln \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{{\mathrm e}^{10}}+x}\right ) \mathrm {csgn}\left (i \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )}{{\mathrm e}^{{\mathrm e}^{10}}+x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{{\mathrm e}^{10}}+x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )}{{\mathrm e}^{{\mathrm e}^{10}}+x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )}{{\mathrm e}^{{\mathrm e}^{10}}+x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (2 \,{\mathrm e}^{x}+1\right ) x +{\mathrm e}^{2 x}\right )}{{\mathrm e}^{{\mathrm e}^{10}}+x}\right )^{3}-2 i \ln \left ({\mathrm e}^{{\mathrm e}^{10}}+x \right )\right )}{2}\right )\) | \(219\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 25, normalized size = 1.19 \begin {gather*} \log \left (\log \left (x^{2} + 2 \, x e^{x} + x + e^{\left (2 \, x\right )}\right ) - \log \left (x + e^{\left (e^{10}\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.13, size = 24, normalized size = 1.14 \begin {gather*} \ln \left (\ln \left (\frac {x+{\mathrm {e}}^{2\,x}+2\,x\,{\mathrm {e}}^x+x^2}{x+{\mathrm {e}}^{{\mathrm {e}}^{10}}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.73, size = 26, normalized size = 1.24 \begin {gather*} \log {\left (\log {\left (\frac {x^{2} + 2 x e^{x} + x + e^{2 x}}{x + e^{e^{10}}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________