Optimal. Leaf size=27 \[ e^{x^2} x \left (\frac {e^{50 x^2}}{x^2}+\frac {5 x}{-1+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 35, normalized size of antiderivative = 1.30, number of steps used = 6, number of rules used = 4, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {1594, 27, 6688, 2288} \begin {gather*} \frac {e^{51 x^2}}{x}-\frac {5 e^{x^2} \left (x^2-x^3\right )}{(1-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{51 x^2} \left (-1+2 x+101 x^2-204 x^3+102 x^4\right )+e^{x^2} \left (-10 x^3+5 x^4-10 x^5+10 x^6\right )}{x^2 \left (1-2 x+x^2\right )} \, dx\\ &=\int \frac {e^{51 x^2} \left (-1+2 x+101 x^2-204 x^3+102 x^4\right )+e^{x^2} \left (-10 x^3+5 x^4-10 x^5+10 x^6\right )}{(-1+x)^2 x^2} \, dx\\ &=\int \left (e^{51 x^2} \left (102-\frac {1}{x^2}\right )+\frac {5 e^{x^2} x \left (-2+x-2 x^2+2 x^3\right )}{(-1+x)^2}\right ) \, dx\\ &=5 \int \frac {e^{x^2} x \left (-2+x-2 x^2+2 x^3\right )}{(-1+x)^2} \, dx+\int e^{51 x^2} \left (102-\frac {1}{x^2}\right ) \, dx\\ &=\frac {e^{51 x^2}}{x}-\frac {5 e^{x^2} \left (x^2-x^3\right )}{(1-x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 37, normalized size = 1.37 \begin {gather*} \frac {e^{51 x^2}}{x}+\frac {5 e^{x^2} \left (-2 x^2+2 x^3\right )}{2 (-1+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 30, normalized size = 1.11 \begin {gather*} \frac {5 \, x^{3} e^{\left (x^{2}\right )} + {\left (x - 1\right )} e^{\left (51 \, x^{2}\right )}}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 36, normalized size = 1.33 \begin {gather*} \frac {5 \, x^{3} e^{\left (x^{2}\right )} + x e^{\left (51 \, x^{2}\right )} - e^{\left (51 \, x^{2}\right )}}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 0.96
method | result | size |
risch | \(\frac {{\mathrm e}^{51 x^{2}}}{x}+\frac {5 x^{2} {\mathrm e}^{x^{2}}}{x -1}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 30, normalized size = 1.11 \begin {gather*} \frac {5 \, x^{3} e^{\left (x^{2}\right )} + {\left (x - 1\right )} e^{\left (51 \, x^{2}\right )}}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 35, normalized size = 1.30 \begin {gather*} \frac {{\mathrm {e}}^{x^2}\,\left (x\,{\mathrm {e}}^{50\,x^2}-{\mathrm {e}}^{50\,x^2}+5\,x^3\right )}{x\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 24, normalized size = 0.89 \begin {gather*} \frac {5 x^{3} e^{x^{2}} + \left (x - 1\right ) e^{51 x^{2}}}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________