Optimal. Leaf size=27 \[ 1-e^{3+4 e^x}+\frac {1}{144} \left (-e^x-x\right )+x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 2194, 2282} \begin {gather*} \frac {143 x}{144}-e^{4 e^x+3}-\frac {e^x}{144} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{144} \int \left (143-e^x-576 e^{3+4 e^x+x}\right ) \, dx\\ &=\frac {143 x}{144}-\frac {\int e^x \, dx}{144}-4 \int e^{3+4 e^x+x} \, dx\\ &=-\frac {e^x}{144}+\frac {143 x}{144}-4 \operatorname {Subst}\left (\int e^{3+4 x} \, dx,x,e^x\right )\\ &=-e^{3+4 e^x}-\frac {e^x}{144}+\frac {143 x}{144}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 0.89 \begin {gather*} \frac {1}{144} \left (-144 e^{3+4 e^x}-e^x+143 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 28, normalized size = 1.04 \begin {gather*} \frac {1}{144} \, {\left (143 \, x e^{x} - e^{\left (2 \, x\right )} - 144 \, e^{\left (x + 4 \, e^{x} + 3\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 17, normalized size = 0.63 \begin {gather*} \frac {143}{144} \, x - \frac {1}{144} \, e^{x} - e^{\left (4 \, e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 18, normalized size = 0.67
method | result | size |
default | \(\frac {143 x}{144}-{\mathrm e}^{4 \,{\mathrm e}^{x}+3}-\frac {{\mathrm e}^{x}}{144}\) | \(18\) |
norman | \(\frac {143 x}{144}-{\mathrm e}^{4 \,{\mathrm e}^{x}+3}-\frac {{\mathrm e}^{x}}{144}\) | \(18\) |
risch | \(\frac {143 x}{144}-{\mathrm e}^{4 \,{\mathrm e}^{x}+3}-\frac {{\mathrm e}^{x}}{144}\) | \(18\) |
derivativedivides | \(\frac {143 \ln \left (4 \,{\mathrm e}^{x}\right )}{144}-\frac {{\mathrm e}^{x}}{144}-\frac {1}{192}-{\mathrm e}^{4 \,{\mathrm e}^{x}+3}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 17, normalized size = 0.63 \begin {gather*} \frac {143}{144} \, x - \frac {1}{144} \, e^{x} - e^{\left (4 \, e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 17, normalized size = 0.63 \begin {gather*} \frac {143\,x}{144}-\frac {{\mathrm {e}}^x}{144}-{\mathrm {e}}^3\,{\mathrm {e}}^{4\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.63 \begin {gather*} \frac {143 x}{144} - \frac {e^{x}}{144} - e^{4 e^{x} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________