Optimal. Leaf size=20 \[ \frac {x^2}{5 \left (-3+\log \left (\frac {1}{4} \log (3 x)\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x-6 x \log (3 x)+2 x \log (3 x) \log \left (\frac {1}{4} \log (3 x)\right )}{45 \log (3 x)-30 \log (3 x) \log \left (\frac {1}{4} \log (3 x)\right )+5 \log (3 x) \log ^2\left (\frac {1}{4} \log (3 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-1+2 \log (3 x) \left (-3+\log \left (\frac {1}{4} \log (3 x)\right )\right )\right )}{5 \log (3 x) \left (3-\log \left (\frac {1}{4} \log (3 x)\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {x \left (-1+2 \log (3 x) \left (-3+\log \left (\frac {1}{4} \log (3 x)\right )\right )\right )}{\log (3 x) \left (3-\log \left (\frac {1}{4} \log (3 x)\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {x}{\log (3 x) \left (-3+\log \left (\frac {1}{4} \log (3 x)\right )\right )^2}+\frac {2 x}{-3+\log \left (\frac {1}{4} \log (3 x)\right )}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {x}{\log (3 x) \left (-3+\log \left (\frac {1}{4} \log (3 x)\right )\right )^2} \, dx\right )+\frac {2}{5} \int \frac {x}{-3+\log \left (\frac {1}{4} \log (3 x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 1.00 \begin {gather*} \frac {x^2}{5 \left (-3+\log \left (\frac {1}{4} \log (3 x)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 16, normalized size = 0.80 \begin {gather*} \frac {x^{2}}{5 \, {\left (\log \left (\frac {1}{4} \, \log \left (3 \, x\right )\right ) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.79, size = 20, normalized size = 1.00 \begin {gather*} -\frac {x^{2}}{5 \, {\left (2 \, \log \relax (2) - \log \left (\log \left (3 \, x\right )\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 17, normalized size = 0.85
method | result | size |
norman | \(\frac {x^{2}}{5 \ln \left (\frac {\ln \left (3 x \right )}{4}\right )-15}\) | \(17\) |
risch | \(\frac {x^{2}}{5 \ln \left (\frac {\ln \left (3 x \right )}{4}\right )-15}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.05, size = 21, normalized size = 1.05 \begin {gather*} -\frac {x^{2}}{5 \, {\left (2 \, \log \relax (2) - \log \left (\log \relax (3) + \log \relax (x)\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.82, size = 17, normalized size = 0.85 \begin {gather*} \frac {x^2}{5\,\left (\ln \left (\frac {\ln \left (3\,x\right )}{4}\right )-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^{2}}{5 \log {\left (\frac {\log {\left (3 x \right )}}{4} \right )} - 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________