Optimal. Leaf size=26 \[ \left (x+\log \left (-1-x+\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.91, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 241, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6688, 12, 6686} \begin {gather*} \left (\log \left (\log \left (\frac {4}{x^2}+e^{-x-2} x\right )-x-1\right )+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (4 e^{2+x} \left (2+2 x+x^2\right )+x^3 \left (-1+3 x+x^2\right )-x \left (4 e^{2+x}+x^3\right ) \log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right ) \left (x+\log \left (-1-x+\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )\right )}{x \left (4 e^{2+x}+x^3\right ) \left (1+x-\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )} \, dx\\ &=2 \int \frac {\left (4 e^{2+x} \left (2+2 x+x^2\right )+x^3 \left (-1+3 x+x^2\right )-x \left (4 e^{2+x}+x^3\right ) \log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right ) \left (x+\log \left (-1-x+\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )\right )}{x \left (4 e^{2+x}+x^3\right ) \left (1+x-\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )} \, dx\\ &=\left (x+\log \left (-1-x+\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 62, normalized size = 2.38 \begin {gather*} 2 \left (\frac {x^2}{2}+x \log \left (-1-x+\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )+\frac {1}{2} \log ^2\left (-1-x+\log \left (\frac {4}{x^2}+e^{-2-x} x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.91, size = 63, normalized size = 2.42 \begin {gather*} x^{2} + 2 \, x \log \left (-x + \log \left (\frac {{\left (x^{3} + 4 \, e^{\left (x + 2\right )}\right )} e^{\left (-x - 2\right )}}{x^{2}}\right ) - 1\right ) + \log \left (-x + \log \left (\frac {{\left (x^{3} + 4 \, e^{\left (x + 2\right )}\right )} e^{\left (-x - 2\right )}}{x^{2}}\right ) - 1\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{6} + 3 \, x^{5} - x^{4} + 4 \, {\left (x^{3} + 2 \, x^{2} + 2 \, x\right )} e^{\left (x + 2\right )} + {\left (x^{5} + 3 \, x^{4} - x^{3} + 4 \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (x + 2\right )} - {\left (x^{4} + 4 \, x e^{\left (x + 2\right )}\right )} \log \left (\frac {{\left (x^{3} + 4 \, e^{\left (x + 2\right )}\right )} e^{\left (-x - 2\right )}}{x^{2}}\right )\right )} \log \left (-x + \log \left (\frac {{\left (x^{3} + 4 \, e^{\left (x + 2\right )}\right )} e^{\left (-x - 2\right )}}{x^{2}}\right ) - 1\right ) - {\left (x^{5} + 4 \, x^{2} e^{\left (x + 2\right )}\right )} \log \left (\frac {{\left (x^{3} + 4 \, e^{\left (x + 2\right )}\right )} e^{\left (-x - 2\right )}}{x^{2}}\right )\right )}}{x^{5} + x^{4} + 4 \, {\left (x^{2} + x\right )} e^{\left (x + 2\right )} - {\left (x^{4} + 4 \, x e^{\left (x + 2\right )}\right )} \log \left (\frac {{\left (x^{3} + 4 \, e^{\left (x + 2\right )}\right )} e^{\left (-x - 2\right )}}{x^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 522, normalized size = 20.08
method | result | size |
risch | \(x^{2}+2 x \ln \left (-2 \ln \relax (x )-\ln \left ({\mathrm e}^{2+x}\right )+\ln \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )+\mathrm {csgn}\left (i {\mathrm e}^{-x -2}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )+\mathrm {csgn}\left (i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )\right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right ) {\mathrm e}^{-x -2}}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right ) {\mathrm e}^{-x -2}}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right ) {\mathrm e}^{-x -2}}{x^{2}}\right )+\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )\right )}{2}-x -1\right )+\ln \left (-2 \ln \relax (x )-\ln \left ({\mathrm e}^{2+x}\right )+\ln \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )+\mathrm {csgn}\left (i {\mathrm e}^{-x -2}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )+\mathrm {csgn}\left (i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )\right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right ) {\mathrm e}^{-x -2}}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right ) {\mathrm e}^{-x -2}}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (4 \,{\mathrm e}^{2+x}+x^{3}\right ) {\mathrm e}^{-x -2}}{x^{2}}\right )+\mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (4 \,{\mathrm e}^{2+x}+x^{3}\right )\right )\right )}{2}-x -1\right )^{2}\) | \(522\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 51, normalized size = 1.96 \begin {gather*} x^{2} + 2 \, x \log \left (-2 \, x + \log \left (x^{3} + 4 \, e^{\left (x + 2\right )}\right ) - 2 \, \log \relax (x) - 3\right ) + \log \left (-2 \, x + \log \left (x^{3} + 4 \, e^{\left (x + 2\right )}\right ) - 2 \, \log \relax (x) - 3\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.84, size = 55, normalized size = 2.12 \begin {gather*} x^2+2\,x\,\ln \left (\ln \left (\frac {x^3\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-2}+4}{x^2}\right )-x-1\right )+{\ln \left (\ln \left (\frac {x^3\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-2}+4}{x^2}\right )-x-1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 26.16, size = 61, normalized size = 2.35 \begin {gather*} x^{2} + 2 x \log {\left (- x + \log {\left (\frac {\left (x^{3} + 4 e^{x + 2}\right ) e^{- x - 2}}{x^{2}} \right )} - 1 \right )} + \log {\left (- x + \log {\left (\frac {\left (x^{3} + 4 e^{x + 2}\right ) e^{- x - 2}}{x^{2}} \right )} - 1 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________