Optimal. Leaf size=27 \[ \left (-11-e^{\left (-1+\frac {3-x}{x}\right ) x^2}-\log (16)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 2, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {2236, 2244} \begin {gather*} e^{6 x-4 x^2}+2 e^{3 x-2 x^2} (11+\log (16)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2236
Rule 2244
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{6 x-4 x^2} (6-8 x) \, dx+\int e^{3 x-2 x^2} (66-88 x+(6-8 x) \log (16)) \, dx\\ &=e^{6 x-4 x^2}+\int e^{3 x-2 x^2} (6 (11+\log (16))-8 x (11+\log (16))) \, dx\\ &=e^{6 x-4 x^2}+2 e^{3 x-2 x^2} (11+\log (16))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 29, normalized size = 1.07 \begin {gather*} e^{(3-4 x) x} \left (e^{3 x}+2 e^{2 x^2} (11+\log (16))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 29, normalized size = 1.07 \begin {gather*} 2 \, {\left (4 \, \log \relax (2) + 11\right )} e^{\left (-2 \, x^{2} + 3 \, x\right )} + e^{\left (-4 \, x^{2} + 6 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 29, normalized size = 1.07 \begin {gather*} 2 \, {\left (4 \, \log \relax (2) + 11\right )} e^{\left (-2 \, x^{2} + 3 \, x\right )} + e^{\left (-4 \, x^{2} + 6 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 1.15
method | result | size |
norman | \({\mathrm e}^{-4 x^{2}+6 x}+\left (8 \ln \relax (2)+22\right ) {\mathrm e}^{-2 x^{2}+3 x}\) | \(31\) |
risch | \({\mathrm e}^{-2 x \left (2 x -3\right )}+8 \,{\mathrm e}^{-x \left (2 x -3\right )} \ln \relax (2)+22 \,{\mathrm e}^{-x \left (2 x -3\right )}\) | \(35\) |
default | \({\mathrm e}^{-4 x^{2}+6 x}+22 \,{\mathrm e}^{-2 x^{2}+3 x}+8 \ln \relax (2) {\mathrm e}^{-2 x^{2}+3 x}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 189, normalized size = 7.00 \begin {gather*} 6 \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\sqrt {2} x - \frac {3}{4} \, \sqrt {2}\right ) e^{\frac {9}{8}} \log \relax (2) + 2 i \, \sqrt {2} {\left (\frac {3 i \, \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\pi } {\left (4 \, x - 3\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {{\left (4 \, x - 3\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (4 \, x - 3\right )}^{2}}} - 2 i \, \sqrt {2} e^{\left (-\frac {1}{8} \, {\left (4 \, x - 3\right )}^{2}\right )}\right )} e^{\frac {9}{8}} \log \relax (2) + \frac {33}{2} \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\sqrt {2} x - \frac {3}{4} \, \sqrt {2}\right ) e^{\frac {9}{8}} + \frac {11}{2} i \, \sqrt {2} {\left (\frac {3 i \, \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\pi } {\left (4 \, x - 3\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {{\left (4 \, x - 3\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (4 \, x - 3\right )}^{2}}} - 2 i \, \sqrt {2} e^{\left (-\frac {1}{8} \, {\left (4 \, x - 3\right )}^{2}\right )}\right )} e^{\frac {9}{8}} + e^{\left (-4 \, x^{2} + 6 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 26, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{6\,x-4\,x^2}+{\mathrm {e}}^{3\,x-2\,x^2}\,\left (\ln \left (256\right )+22\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 0.96 \begin {gather*} e^{- 4 x^{2} + 6 x} + \left (8 \log {\relax (2 )} + 22\right ) e^{- 2 x^{2} + 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________