Optimal. Leaf size=24 \[ \log (x) \left (-\frac {x}{-25+x}+\frac {e^x \log (x)}{3 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.66, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 7, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {1594, 27, 12, 6742, 2314, 31, 2288} \begin {gather*} \frac {e^x \log ^2(x)}{3 x}+\frac {x \log (x)}{25-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 1594
Rule 2288
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {75 x^2-3 x^3+\left (75 x^2+e^x \left (1250-100 x+2 x^2\right )\right ) \log (x)+e^x \left (-625+675 x-51 x^2+x^3\right ) \log ^2(x)}{x^2 \left (1875-150 x+3 x^2\right )} \, dx\\ &=\int \frac {75 x^2-3 x^3+\left (75 x^2+e^x \left (1250-100 x+2 x^2\right )\right ) \log (x)+e^x \left (-625+675 x-51 x^2+x^3\right ) \log ^2(x)}{3 (-25+x)^2 x^2} \, dx\\ &=\frac {1}{3} \int \frac {75 x^2-3 x^3+\left (75 x^2+e^x \left (1250-100 x+2 x^2\right )\right ) \log (x)+e^x \left (-625+675 x-51 x^2+x^3\right ) \log ^2(x)}{(-25+x)^2 x^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {3 (-25+x-25 \log (x))}{(-25+x)^2}+\frac {e^x \log (x) (2-\log (x)+x \log (x))}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^x \log (x) (2-\log (x)+x \log (x))}{x^2} \, dx-\int \frac {-25+x-25 \log (x)}{(-25+x)^2} \, dx\\ &=\frac {e^x \log ^2(x)}{3 x}-\int \left (\frac {1}{-25+x}-\frac {25 \log (x)}{(-25+x)^2}\right ) \, dx\\ &=-\log (25-x)+\frac {e^x \log ^2(x)}{3 x}+25 \int \frac {\log (x)}{(-25+x)^2} \, dx\\ &=-\log (25-x)+\frac {x \log (x)}{25-x}+\frac {e^x \log ^2(x)}{3 x}+\int \frac {1}{-25+x} \, dx\\ &=\frac {x \log (x)}{25-x}+\frac {e^x \log ^2(x)}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{3} \log (x) \left (-\frac {3 x}{-25+x}+\frac {e^x \log (x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 29, normalized size = 1.21 \begin {gather*} \frac {{\left (x - 25\right )} e^{x} \log \relax (x)^{2} - 3 \, x^{2} \log \relax (x)}{3 \, {\left (x^{2} - 25 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 35, normalized size = 1.46 \begin {gather*} \frac {x e^{x} \log \relax (x)^{2} - 3 \, x^{2} \log \relax (x) - 25 \, e^{x} \log \relax (x)^{2}}{3 \, {\left (x^{2} - 25 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.96
method | result | size |
default | \(\frac {{\mathrm e}^{x} \ln \relax (x )^{2}}{3 x}-\frac {\ln \relax (x ) x}{x -25}\) | \(23\) |
risch | \(\frac {{\mathrm e}^{x} \ln \relax (x )^{2}}{3 x}-\frac {25 \ln \relax (x )}{x -25}-\ln \relax (x )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 1.04 \begin {gather*} \frac {e^{x} \log \relax (x)^{2}}{3 \, x} - \frac {25 \, \log \relax (x)}{x - 25} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (2\,x^2-100\,x+1250\right )+75\,x^2\right )+75\,x^2-3\,x^3+{\mathrm {e}}^x\,{\ln \relax (x)}^2\,\left (x^3-51\,x^2+675\,x-625\right )}{3\,x^4-150\,x^3+1875\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.92 \begin {gather*} - \log {\relax (x )} - \frac {25 \log {\relax (x )}}{x - 25} + \frac {e^{x} \log {\relax (x )}^{2}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________