Optimal. Leaf size=21 \[ -2 \left (e^{4-e^{2 x} x}+x\right )-10 \log (4) \]
________________________________________________________________________________________
Rubi [F] time = 0.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-2+e^{4+2 x-e^{2 x} x} (2+4 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-2 x+\int e^{4+2 x-e^{2 x} x} (2+4 x) \, dx\\ &=-2 x+\int \left (2 e^{4+2 x-e^{2 x} x}+4 e^{4+2 x-e^{2 x} x} x\right ) \, dx\\ &=-2 x+2 \int e^{4+2 x-e^{2 x} x} \, dx+4 \int e^{4+2 x-e^{2 x} x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 18, normalized size = 0.86 \begin {gather*} -2 e^{4-e^{2 x} x}-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 26, normalized size = 1.24 \begin {gather*} -2 \, {\left (x e^{\left (2 \, x\right )} + e^{\left (-x e^{\left (2 \, x\right )} + 2 \, x + 4\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 16, normalized size = 0.76 \begin {gather*} -2 \, x - 2 \, e^{\left (-x e^{\left (2 \, x\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 0.81
method | result | size |
default | \(-2 x -2 \,{\mathrm e}^{-x \,{\mathrm e}^{2 x}+4}\) | \(17\) |
norman | \(-2 x -2 \,{\mathrm e}^{-x \,{\mathrm e}^{2 x}+4}\) | \(17\) |
risch | \(-2 x -2 \,{\mathrm e}^{-x \,{\mathrm e}^{2 x}+4}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 16, normalized size = 0.76 \begin {gather*} -2 \, x - 2 \, e^{\left (-x e^{\left (2 \, x\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 16, normalized size = 0.76 \begin {gather*} -2\,x-2\,{\mathrm {e}}^4\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{2\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.71 \begin {gather*} - 2 x - 2 e^{- x e^{2 x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________