Optimal. Leaf size=36 \[ 3 \left (-\frac {x}{5}+\frac {\log (3-x)}{x}-x \left (e^{2 x}-x^2+\log (5+x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.99, antiderivative size = 60, normalized size of antiderivative = 1.67, number of steps used = 24, number of rules used = 11, integrand size = 113, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {1594, 6728, 36, 31, 72, 2176, 2194, 2395, 29, 2389, 2295} \begin {gather*} 3 x^3-\frac {3 x}{5}+\frac {3 e^{2 x}}{2}-\frac {3}{2} e^{2 x} (2 x+1)-3 (x+5) \log (x+5)+15 \log (x+5)+\frac {3 \log (3-x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 72
Rule 1594
Rule 2176
Rule 2194
Rule 2295
Rule 2389
Rule 2395
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {75 x+60 x^2+39 x^3-693 x^4+90 x^5+45 x^6+e^{2 x} \left (225 x^2+420 x^3-75 x^4-30 x^5\right )+\left (225-30 x-15 x^2\right ) \log (3-x)+\left (225 x^2-30 x^3-15 x^4\right ) \log (5+x)}{x^2 \left (-75+10 x+5 x^2\right )} \, dx\\ &=\int \left (\frac {12}{(-3+x) (5+x)}+\frac {15}{(-3+x) x (5+x)}+\frac {39 x}{5 (-3+x) (5+x)}-\frac {693 x^2}{5 (-3+x) (5+x)}+\frac {18 x^3}{(-3+x) (5+x)}+\frac {9 x^4}{(-3+x) (5+x)}-3 e^{2 x} (1+2 x)-\frac {3 \log (3-x)}{x^2}-3 \log (5+x)\right ) \, dx\\ &=-\left (3 \int e^{2 x} (1+2 x) \, dx\right )-3 \int \frac {\log (3-x)}{x^2} \, dx-3 \int \log (5+x) \, dx+\frac {39}{5} \int \frac {x}{(-3+x) (5+x)} \, dx+9 \int \frac {x^4}{(-3+x) (5+x)} \, dx+12 \int \frac {1}{(-3+x) (5+x)} \, dx+15 \int \frac {1}{(-3+x) x (5+x)} \, dx+18 \int \frac {x^3}{(-3+x) (5+x)} \, dx-\frac {693}{5} \int \frac {x^2}{(-3+x) (5+x)} \, dx\\ &=-\frac {3}{2} e^{2 x} (1+2 x)+\frac {3 \log (3-x)}{x}+\frac {3}{2} \int \frac {1}{-3+x} \, dx-\frac {3}{2} \int \frac {1}{5+x} \, dx+3 \int e^{2 x} \, dx+3 \int \frac {1}{(3-x) x} \, dx-3 \operatorname {Subst}(\int \log (x) \, dx,x,5+x)+\frac {39}{5} \int \left (\frac {3}{8 (-3+x)}+\frac {5}{8 (5+x)}\right ) \, dx+9 \int \left (19+\frac {81}{8 (-3+x)}-2 x+x^2-\frac {625}{8 (5+x)}\right ) \, dx+15 \int \left (\frac {1}{24 (-3+x)}-\frac {1}{15 x}+\frac {1}{40 (5+x)}\right ) \, dx+18 \int \left (-2+\frac {27}{8 (-3+x)}+x+\frac {125}{8 (5+x)}\right ) \, dx-\frac {693}{5} \int \left (1+\frac {9}{8 (-3+x)}-\frac {25}{8 (5+x)}\right ) \, dx\\ &=\frac {3 e^{2 x}}{2}-\frac {3 x}{5}+3 x^3-\frac {3}{2} e^{2 x} (1+2 x)+\log (3-x)+\frac {3 \log (3-x)}{x}-\log (x)+15 \log (5+x)-3 (5+x) \log (5+x)+\int \frac {1}{3-x} \, dx+\int \frac {1}{x} \, dx\\ &=\frac {3 e^{2 x}}{2}-\frac {3 x}{5}+3 x^3-\frac {3}{2} e^{2 x} (1+2 x)+\frac {3 \log (3-x)}{x}+15 \log (5+x)-3 (5+x) \log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 63, normalized size = 1.75 \begin {gather*} \frac {3}{5} \left (\frac {5}{3} \log (3-x)-\frac {5}{3} \log (-3+x)\right )+\frac {3}{5} \left (-x-5 e^{2 x} x+5 x^3+\frac {5 \log (3-x)}{x}-5 x \log (5+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 42, normalized size = 1.17 \begin {gather*} \frac {3 \, {\left (5 \, x^{4} - 5 \, x^{2} e^{\left (2 \, x\right )} - 5 \, x^{2} \log \left (x + 5\right ) - x^{2} + 5 \, \log \left (-x + 3\right )\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 42, normalized size = 1.17 \begin {gather*} \frac {3 \, {\left (5 \, x^{4} - 5 \, x^{2} e^{\left (2 \, x\right )} - 5 \, x^{2} \log \left (x + 5\right ) - x^{2} + 5 \, \log \left (-x + 3\right )\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 42, normalized size = 1.17
method | result | size |
risch | \(-3 x \ln \left (5+x \right )+\frac {3 x^{4}-3 \,{\mathrm e}^{2 x} x^{2}-\frac {3 x^{2}}{5}+3 \ln \left (3-x \right )}{x}\) | \(42\) |
default | \(-3 x \,{\mathrm e}^{2 x}+\ln \left (-x \right )+\frac {\ln \left (3-x \right ) \left (3-x \right )}{x}+3 x^{3}-\frac {3 x}{5}+15 \ln \left (5+x \right )+\ln \left (x -3\right )-\ln \relax (x )-3 \left (5+x \right ) \ln \left (5+x \right )+15\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 42, normalized size = 1.17 \begin {gather*} \frac {3 \, {\left (5 \, x^{4} - 5 \, x^{2} e^{\left (2 \, x\right )} - 5 \, x^{2} \log \left (x + 5\right ) - x^{2} + 5 \, \log \left (-x + 3\right )\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.43, size = 57, normalized size = 1.58 \begin {gather*} 3\,x^3-3\,x\,{\mathrm {e}}^{2\,x}-3\,x\,\ln \left (x+5\right )-\frac {3\,x}{5}+\frac {\ln \left (3-x\right )\,\left (3\,x^3+6\,x^2-45\,x\right )}{x^2\,\left (x-3\right )\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 34, normalized size = 0.94 \begin {gather*} 3 x^{3} - 3 x e^{2 x} - 3 x \log {\left (x + 5 \right )} - \frac {3 x}{5} + \frac {3 \log {\left (3 - x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________